Article
2021

Quantum-Chemical Investigation of Pb2+ Ion Adsorption at Au(111) from Alkaline Medium


N. A. Rogozhnikov N. A. Rogozhnikov
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521020087
Abstract / Full Text

The interaction of lead hydroxides with gold surface in alkaline medium is studied by the density functional theory using the cluster model of the metal surface. For this interaction, its geometrics and energetics were estimated. The electron structure of the system has been analyzed. The d-orbital of gold and p‑orbital of oxygen are shown to mainly contribute to the formation of the system’s molecular orbitals. Because the contributions of s- and p-orbitals being comparable, the role of lead in less significant. Under alkaline conditions, the lead hydroxides’ adsorption is based on their interaction with OH ions adsorbed at gold. The \({\text{Pb}}({\text{OH}})_{{\text{3}}}^{ - }\) hydroxo-complex is shown to be the most probable form of lead hydroxides existing at the gold surface.

Author information
  • Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630128, Novosibirsk, Russia

    N. A. Rogozhnikov

  • Novosibirsk State Technical University, 630073, Novosibirsk, Russia

    N. A. Rogozhnikov

References
  1. Adžić, R.R. and Despić, A.R., Catalytic effect of metal adatoms deposited at underpotential, J. Chem. Phys., 1974, vol. 61, p. 3482.
  2. Petrii, O.A. and Lapa, A.S., Electrochemistry of adatomic layers, Itogi nauki, Electrochemistry (in Russian), Polukarov, Yu.M., Ed., Moscow: VINITI, 1987, vol. 24, p. 96.
  3. Rhodes, A., Feliu, J.M., Aldaz, A., and Clavilier, J., The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III)/Cr(II), J. Electroanal. Chem., 1989, vol. 271, p. 127.
  4. Paliteiro, C. and Martins, N., Electroreduction of oxygen on a (100)-like polycrystalline gold surface in an alkaline solution containing Pb(II), Electrochim. Acta, 1998, vol. 44, p. 1359.
  5. Oh, I., Gewirth, A.A., and Kwak, J., Electrocatalytic dioxygen reduction on underpotentially deposited Pb on Au(111) studied by an active site blocking strategy, J. Catal., 2003, vol. 213, p. 17.
  6. Hsieh, S.-J. and Gewirth, A.A., Poisoning the catalytic reduction of peroxide on Pb underpotential deposition modified Au surfaces with iodine, Surf. Sci., 2001, vol. 498, p. 147.
  7. McJntyre, J.D.E. and Peck, W.F., Electrodeposition of gold, J. Electrochem. Soc., 1976, vol. 123, p. 1800.
  8. Bek, R.Yu. and Shuraeva, L.I., Effect of lead ions on the kinetics of gold deposition from cyanide electrolytes, Russ. J. Electrochem., 2004. vol. 40, p. 704.
  9. Nikol, M.J., The anodic behaviour of gold. P. II. Oxidation in alkaline solutions, Gold. Bull., 1980, vol. 13, p. 105.
  10. Bek, R.Yu. and Shuraeva, L.I., Electrocatalysis by adatoms at the gold and silver dissolution in cyanide solutions, Russ. J. Electrochem., 2008, vol. 44, p. 113.
  11. Polyansky, N.G., Lead (in Russian), Moscow: Nauka, 1986.
  12. Patnaik, P., Handbook of Inorganic Chemicals, New York: McGraw-Hill, 2003.
  13. Perera, W.N., Hefter, G., and Sipos, P.M., An investigation of the lead(II)-hydroxide system, Inorg. Chem., 2001, vol. 40, p. 3974.
  14. Swathirajan, S., Mizota, H., and Bruckenstein, S., Thermodynamic properties of monolayers of silver and lead deposited on polycrystalline gold in the underpotential region, J. Phys. Chem., 1982, vol. 86, p. 2480.
  15. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A.-K., Sjöberg, S., and Wanner, H., Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH, Cl, \({\text{CO}}_{{\text{3}}}^{{{\text{2}}-}},\) \({\text{SO}}_{{\text{4}}}^{{{\text{2}}-}},\) and \({\text{PO}}_{{\text{4}}}^{{{\text{3}}-}}\) systems (IUPAC Technical Report), Pure Appl. Chem., 2009, vol. 81, p. 2425.
  16. Carell, B. and Olin, A., Studies on the hydrolysis of metal ions. 31. The complex formation between Pb2+ and OH in Na+ (OH, \({\text{C1O}}_{4}^{ - }\)) medium, Acta Chem. Scand, 1960, vol. 14, p. 1999.
  17. Ferri, D., Grenthe, I., Hietanen, S., and Salvatore, F., Studies on metal carbonate equilibria. 18. Lead(II) carbonate complexes in alkaline solutions, Acta Chem. Scand, 1987, vol. A41, p. 349.
  18. Wang, Y.-Y., Chai, L.-Y., Chang, H., Peng, X.-Y., and Shu, Y.-D., Equilibrium of hydroxyl complex ions in Pb2+–H2O system, Trans. Nonferrous Met. Soc. China, 2009, vol. 19, p. 458.
  19. Mulvaney, P., Giersig, M., and Henglein, A., Surface chemistry of colloidal gold: deposition of lead and accompanying optical effects, J. Phys. Chem., 1992, vol. 96, p. 10419.
  20. Rojas, M.I., Dassie, S.A., and Leiva, E.P.M., Theoretical study about the adsorption of lead on (111), (100), (110) monocrystalline surfaces of gold, Z. Phys. Chem., 1994, vol. 185, p. 33.
  21. Pershina, V., Anton, J., and Jacob, T., Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb, J. Chem. Phys., 2009, vol. 131, p. 084713.
  22. Zaitsevskii, A., Wüllen, C. van, Rykova, E.A., and Titov, A.V., Two-component relativistic density functional theory modeling of the adsorption of element 114(eka-lead) on gold, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 4152.
  23. Rogozhnikov, N.A., A quantum-chemical study of the adsorption of Pb atoms on Au(111), Prot. Met. Phys. Chem. Surf., 2018, vol. 54. p. 161.
  24. Rogozhnikov, N.A., Quantum-chemical study of the adsorption of Pb2+ on Au(111), Russ. J. Electrochem., 2018, vol. 11, p. 902.
  25. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, vol. 14, p. 1347.
  26. Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley–VCH and Wiley, 2001.
  27. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, p. 5648.
  28. Stephens, P.J., Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, p. 11623.
  29. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, vol, 82. p. 299.
  30. McLean, A.D. and Chandler, G.S., Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18, J. Chem. Phys., 1980, vol. 72, p. 5639.
  31. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, vol. 72, p. 650.
  32. Löwdin, P.-O., On the nonorthogonality problem, Adv. Quantum Chem., 1970, vol. 5, p. 185.
  33. Dean J.A., Lange ' s Handbook of Chemistry, New York: McGraw-Hill, 1999, p. 4.7, 4.24, 4.29.
  34. Titmuss, S., Wander, A., and King, D.A., Reconstruction of clean and adsorbate-covered metal surfaces, Chem. Rev., 1996, vol. 96, p. 1291.
  35. Greenwood, N.N. and Earnshow, A., Chemistry of Elements, Oxford: Butterworth-Heinemann, 1998.
  36. Barone, V., Cossi, M., and Tomasi, J., A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys., 1997, vol. 107, p. 3210.
  37. Barone, V. and Cossi, M., Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A., 1998, vol. 102, p. 1995.
  38. Cossi, M., Rega, N., Scalmani, G., and Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comp. Chem., 2003, vol. 24, p. 669.
  39. Boys, S.F. and Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, vol. 19, p. 553.
  40. Jensen, F., Introduction to Computational Chemistry, Chichester: Wiley, 2007.
  41. Schleyer, P.v.R., Encyclopedia of Computational Chemistry, Chichester: Willey, 1998. vol. 1, p. 700.
  42. O’Boyle, N.M., Tenderholt, A.L., and Langner, K., Software news and updates cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, vol. 29, p. 839.
  43. Chambers, C.C., Hawkins, G.D., Cramer, C.J., and Truhlar, D.C., Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, J. Phys. Chem., 1996, vol. 100, p. 16385.
  44. Li, K., Li, M., and Xue, D., Solution-Phase Electronegativity Scale: Insight into the Chemical Behaviors of Metal Ions in Solution, J. Phys. Chem. A, 2012, vol. 116, p. 4192.
  45. Da Silva, E.F., Svendsen, H.F., and Merz, K.M., Explicitly representing the solvation shell in continuum solvent calculations, J. Phys. Chem. A, 2009, vol. 113, p. 6404.
  46. Bondi, A., Van der waals volumes and radii, J. Phys. Chem., 1964, vol. 68, p. 441.
  47. Bode, D.D., Jr., Andersen, T.N., and Eyring, H., Anion and pH effects on the potentials of zero charge of gold and silver electrodes, J. Phys. Chem., 1967, vol. 71, p. 792.
  48. Bek, R.Yu., Makhnyr’, N.V., and Zelinskii, A.G., Capacitance of electric double-layer at a recoverable gold electrode, Sov. Electrochem., 1975, vol. 11, p. 1503.
  49. Chen, A. and Lipkowski, J., Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode, J. Phys. Chem. B, 1999, vol. 103, p. 682.
  50. Zhichao, S. and Lipkowski, J., Chloride adsorption at the Au(111) electrode surface, J. Electroanal. Chem., 1996, vol. 403, p. 225.
  51. Zhichao, S., Lipkowski, J., Chen, A., Pettinger, B., and Bilger, C., Ionic adsorption at the Au(111) electrode, Electrochim. Acta, 1998, vol. 43, p. 2875.
  52. Pessoa, A.M., Fajín, J.L.C., Gomes, J.R.B., and Cordeiro, M.N.D.S., Ionic and radical adsorption on the Au(hkl) surfaces: A DFT study, Surf. Sci., 2012, vol. 606, p. 69.