Simultaneous Determination of Fat-Soluble Vitamins by Using Modified Glassy Carbon Electrode

A. A. Avan A. A. Avan , H. Filik H. Filik
Russian Journal of Electrochemistry
Abstract / Full Text

This study demonstrates the development of an electrochemical sensor based on β-cyclodextrin/multi-wall carbon nanotubes modified glassy carbon electrode for detecting fat-soluble vitamins (vitamin A, vitamin D3, vitamin E and vitamin K1) in an aqueous media of micellar solutions using voltammetric studies. The linear calibration curves were 8–100, 0.8–60, 0.5–60 and 0.1–20 µM for vitamin A, vitamin D3, vitamin E and vitamin K1, respectively. The optimal conditions for quantitative determination were obtained in a Britton–Robinson buffer at pH 5.0. Moreover, it is found that β-cyclodextrin/multi-wall carbon nanotubes displays high reproducibility and selectivity for the determination of fat-soluble vitamins. The proposed voltammetric method permits the rapid and simple simultaneous electrochemical determination of fat-soluble vitamins. In this study, we used a sample pre-treatment methods, liquid-liquid extraction with hexane. At the end of the study, the proposed approach was applied to the electrochemical simultaneous determination of the mixed pharmaceutical sample and milk sample.

Author information
  • Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320, Istanbul, Avcılar, Turkey

    A. A. Avan & H. Filik

  1. Waldenstedt, L., Nutritional factors of importance for optimal leg health in broilers: a review, Anim. Feed. Sci. Technol., 2006, vol. 126, nos. 3–4, p. 291.
  2. Combs, G.F., The Vitamins, 4th ed., London: Acad. Press, 2012.
  3. Nelson, D.L. and Cox, M.M., Lehninger Principles of Biochemistry, 6th ed., New York: W.H. Freeman and Co., 2013.
  4. Shi, H., Ma, Y., Humphrey, J.H., and Craft, N.E., Determination of vitamin A in dried human blood spots by high-performance capillary electrophoresis with laser-excited fluorescence detection, J. Chromatogr. B: Biomed. Appl., 1995, vol. 665, no. 1, p. 89.
  5. Delgado-Zamarreño, M., González-Maza, I., Sánchez-Pérez, A., and Carabias-Martinez, R., Separation and simultaneous determination of water-soluble and fat-soluble vitamins by electrokinetic capillary chromatography, J. Chromatogr. A, 2002, vol. 953, nos. 1–2, p. 257.
  6. Zhang, Y., Zhou, W.-E., Yan, J.-Q., Liu, M., Zhou, Y., Shen, X., Ma, Y.-L., Feng, X.-S., Yang, J., and Li, G.-H., A review of the extraction and determination methods of thirteen essential vitamins to the human body: an update from 2010, Molecules, 2018, vol. 23, no. 6, p. 1484.
  7. Karaźniewicz-Łada, M. and Główka, A., A review of chromatographic methods for the determination of water- and fat-soluble vitamins in biological fluids, J. Sep. Sci., 2016, vol. 39, no. 1, p. 132.
  8. Ravisankar, P., Reddy, A.A., Nagalakshmi, B., Koushik, O.S., Vijaya Kumar, B., and Anvith, P.S., The comprehensive review on fat soluble vitamins, IOSR J. Pharm., 2015, vol. 5, no. 11, p. 12.
  9. Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., and Martín, J., Flow-injection fluorimetric determination of vitamin K1 based on a photochemical reaction, Talanta, 1999, vol. 50, no. 1, p. 49.
  10. Amin, A.S., Colorimetric determination of tocopheryl acetate (vitamin E) in pure form and in multi-vitamin capsules, Eur. J. Pharm. Biopharm., 2001, vol. 51, no. 3, p. 267.
  11. Tütem, E., Apak, R., Günaydı, E., and Sözgen, K., Spectrophotometric determination of vitamin E (α-tocopherol) using copper(II)-neocuproine reagent, Talanta, 1997, vol. 44, no. 2, p. 249.
  12. Song, W.O., Beecher, G.R., and Eitenmiller, R.R., Modern Analytical Methodologies in Fat- and Water- Soluble Vitamins, New York: John Wiley & Sons, 2000.
  13. Momenbeik, F. and Bagheri, N., Optimization of fat-soluble vitamins separations by reversed-phase liquid chromatography with the use of aliphatic alcohols as mobile phase additives, J. Liq. Chromatogr. Relat. Technol., 2015, vol. 38, no. 14, p. 1355.
  14. Gomis, D., Fernández, M., and Gutiérrez Alvarez, M., Simultaneous determination of fat-soluble vitamins and provitamins in milk by microcolumn liquid chromatography, J. Chromatogr. A, 2000, vol. 891, no. 1, p. 109.
  15. Moreno, P. and Salvadó, V., Determination of eight water- and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography, J. Chromatogr. A, 2000, vol. 870, nos. 1–2, p. 207.
  16. Iwase, H., Determination of vitamin D2 in emulsified nutritional supplements by solid-phase extraction and column-switching high-performance liquid chromatography with UV detection, J. Chromatogr. A, 2000, vol. 881, no. 1-2, p. 189.
  17. Gimeno, E., Castellote, A., Lamuela-Raventós, R., de la Torre, M., and López-Sabater, M., Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography, J. Chromatogr. A, 2000, vol. 881, nos. 1–2, p. 251.
  18. Escrivá, A., Esteve, M., Farré, R., and Frígola, A., Determination of liposoluble vitamins in cooked meals, milk and milk products by liquid chromatography, J. Chromatogr. A, 2002, vol. 947, no. 2, p. 313.
  19. Casal, S., Macedo, B., and Oliveira, M.B.P., Simultaneous determination of retinol, β-carotene and α-tocopherol in adipose tissue by high-performance liquid chromatography, J. Chromatogr. B: Biomed. Sci. Appl., 2001, vol. 763, no. 1-2, p. 1.
  20. Rodrigo, N., Alegría, A., Barberá, R., and Farré, R., High-performance liquid chromatographic determination of tocopherols in infant formulas, J. Chromatogr. A, 2002, vol. 947, no. 1, p. 97.
  21. Barek, J., Pecková, K., and Vyskočil, V., Where modern electroanalytical methods verge fifty years after nobel prize for polarography, Chem. List., 2009, vol. 103, no. 11, p. 889.
  22. Sýs, M., Švecová, B., Švancara, I., and Metelka, R., Determination of vitamin E in margarines and edible oils using square wave anodic stripping voltammetry with a glassy carbon paste electrode, Food Chem., 2017, vol. 229, p. 621.
  23. Mikheeva, E.V. and Anisimova, L.S., Voltammetric determination of vitamin E (α-Tocopherol acetate) in multicomponent vitaminized mixtures, J. Anal. Chem., 2007, vol. 62, no. 4, p. 373.
  24. Michalkiewicz, S., Pryciak, M., Malyszko, J., and Oszczudlowski, J., Voltammetric determination of α‑tocopheryl acetate in pharmaceutical dosage forms, Electroanalysis, 2004, vol. 16, no. 11, p. 961.
  25. Ly, S.Y., Voltammetric analysis of DL-α-tocopherol with a paste electrode, J. Sci. Food Agric., 2008, vol. 88, no. 7, p. 1272.
  26. Atuma, S.S., Lindquist, J., and Lundström, K., The electrochemical determination of vitamin A. Part I. Voltammetric determination of vitamin A in pharmaceutical preparations. Analyst, 1974, vol. 99, no. 1183, p. 683.
  27. Li, S.-G., Xue, W.-T., and Zhang, H., Voltammetric behavior and determination of tocopherol in vegetable oils at a polypyrrole modified electrode, Electroanalysis, 2006, vol. 18, no. 23, p. 2337.
  28. Ziyatdinova, G., Giniyatova, E., and Budnikov, H., Cyclic voltammetry of retinol in surfactant media and its application for the analysis of real samples, Electroanalysis, 2010, vol. 22, no. 22, p. 2708.
  29. Cincotto, F.H., Canevari, T.C., and Machado, S.A.S., Highly sensitive electrochemical sensor for determination of vitamin D in mixtures of water-ethanol, Electroanalysis, 2014, vol. 26, no. 12, p. 2783.
  30. Žabčíková, S., Mikysek, T., Červenka, L., and Sýs, M., Electrochemical study and determination of all-trans-retinol at carbon paste electrode modified by a surfactant, Food Technol. Biotechnol., 2018, vol. 56, no. 3, p. 337.
  31. Jaiswal, P.V., Ijeri, V.S., and Srivastava, A.K., Voltammetric behavior of α-tocopherol and its determination using surfactant+ethanol+water and surfactant+acetonitrile+water mixed solvent systems, Anal. Chim. Acta, 2001, vol. 441, no. 2, p. 201.
  32. Filik, H., Avan, A.A., Aydar, S., and Çakar, Ş., Determination of tocopherol using reduced graphene oxide-nafion hybrid-modified electrode in pharmaceutical capsules and vegetable oil samples, Food Anal. Methods, 2016, vol. 9, no. 6, p. 1745.
  33. Filik, H. and Avan, A.A., Simultaneous electrochemical determination of vitamin K1 and vitamin D3 by using poly (alizarin red S)/multi-walled carbon nanotubes modified glassy electrode, Curr. Anal. Chem., 2017, vol. 13, no. 5, p. 350.
  34. Filik, H., Avan, A.A., and Aydar, S., Simultaneous electrochemical determination of α-tocopherol and retinol in micellar media by a poly(2,2′-(1,4 phenylenedivinylene)-bis-8-hydroxyquinaldine)-multiwalled carbon nanotube modified electrode, Anal. Lett., 2016, vol. 49, no. 8, p. 1240.
  35. Robledo, S.N., Zachetti, V.G.L., Zon, M.A., and Fernández, H., Quantitative determination of tocopherols in edible vegetable oils using electrochemical ultra-microsensors combined with chemometric tools, Talanta, 2013, vol. 116, p. 964.
  36. Ziyatdinova, G., Morozov, M., and Budnikov, H., MWNT-modified electrodes for voltammetric determination of lipophilic vitamins, J. Solid State Electrochem., 2012, vol. 16, p. 2441.
  37. Men, K., Chen, Y., Liu, J., and Wei, D., Electrochemical detection of vitamin D2 and D3 based on a Au-Pd modified glassy carbon electrode, Int. J. Electrochem. Sci., 2017, vol. 12, p. 9555.
  38. Sýs, M., Jashari, G., Švecová, B., Arbneshi, T., and Metelka, R., Determination of vitamin K1 using square wave adsorptive stripping voltammetry at solid glassy carbon electrode, J. Electroanal. Chem., 2018, vol. 821, p. 10.
  39. Thangphatthanarungruang, J., Ngamaroonchote, A., Laocharoensuk, R., Chotsuwan, C., and Siangproh, W., A novel electrochemical sensor for the simultaneous determination of fat-soluble vitamins using a screen-printed graphene/nafion electrode, Key Eng. Mater., 2018, vol. 777, p. 597.
  40. Sýs, M., Žabcíková, S., Cervenka, L., and Vytras, K., Adsorptive stripping voltammetry in lipophilic vitamins determination, Potravinarstvo, 2016, vol. 10, no. 1, p. 260.
  41. Lovander, M.D., Lyon, J.D., Parr, D.L., Wang, J., Parke, B., and Leddy, J., Critical review—electrochemical properties of 13 vitamins: a critical review and assessment, J. Electrochem. Soc., 2018, vol. 165, no. 2, p. G18.
  42. Tan, Y.S., Urbančok, D., and Webster, R.D., Contrasting voltammetric behavior of different forms of vitamin A in aprotic organic solvents, J. Phys. Chem. B, 2014, vol. 118, no. 29, p. 8591.
  43. Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H., Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci., 2010 vol. 35, no. 7, p. 837.
  44. Rahemi, V., Garrido, J.M.P.J, Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Electrochemical determination of the herbicide bentazone using a carbon nanotube β‑cyclodextrin modified electrode, Electroanalysis, 2013, vol. 25, no. 10, p. 2360.
  45. Rahemi, V., Vandamme, J.J., Garrido, J.M.P.J., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Enhanced host-guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor, Talanta, 2012, vol. 99, p. 288.
  46. Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, nos. 1–2, p. 149.
  47. Garrido, J.M.P.J., Rahemi, V., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Carbon nanotube β-cyclodextrin modified electrode as enhanced sensing platform for the determination of fungicide pyrimethanil, Food Control, 2016, vol. 60, p. 7.
  48. Ramanathan, T., Fisher, F.T., Ruoff, R.S., and Brinson, L.C., Amino-functionalized carbon nanotubes for binding to polymers and biological systems., Chem. Mater., 2005, vol. 17, no. 6, p. 1290.
  49. Katsa, M., Proestos, C., and Komaitis, E., Determination of fat soluble vitamins A and E in infant formulas by HPLC-DAD, Curr. Res. Nutr. Food Sci. J., 2016, vol. 4, p. 92.
  50. Wang, X., Song, X.-J., Xuan, H., and Yang, F., Preparation of β-cyclodextrin-modified multi-walled CNTs and its application in capturing β-naphthol from wastewater, Micro Nano Lett., 2012, vol. 7, no. 9, p. 892.
  51. Liu, K., Fu, H., Xie, Y., Zhang, L., Pan, K., and Zhou, W., Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C, 2008, vol. 112, no. 4, p. 951.
  52. Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., and Wolf, B., Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures, Biosens. Bioelectron., 1997, vol. 12, no. 1, p. 29.
  53. Zhao, L., Li, P., and Yalkowsky, S.H., Solubilization of fluasterone, J. Pharm. Sci., 1999, vol. 88, no. 10, p. 967.
  54. Alkhamis, K.A., Allaboun, H., and Al-Momani, W.Y., Study of the solubilization of gliclazide by aqueous micellar solutions, J. Pharm. Sci., 2003, vol. 92, no. 4, p. 839.
  55. Li, P. and Zhao, L., Solubilization of flurbiprofen in pH-surfactant solutions, J. Pharm. Sci., 2003, vol. 92, no. 5, p. 951.
  56. Sugihara, G., Nagadome, S., Oh, S.-W., and Ko, J.-S., A review of recent studies on aqueous binary mixed surfactant systems, J. Oleo. Sci., 2008, vol. 57, no. 2, p. 61.
  57. Shi, Z., Chen, J., and Yin, X., Effect of anionic-nonionic-mixed surfactant micelles on solubilization of PAHs, J. Air Waste Manage. Assoc., 2013, vol. 63, no. 6, p. 694.