Bipolar Electrochemical Exfoliation of Graphite for Synthesizing Electrocatalysts of Oxygen Reduction

V. K. Kochergin V. K. Kochergin , N. S. Komarova N. S. Komarova , A. S. Kotkin A. S. Kotkin , R. A. Manzhos R. A. Manzhos , A. G. Krivenko A. G. Krivenko
Russian Journal of Electrochemistry
Abstract / Full Text

A nanocomposite of few-layer graphene structures with cobalt oxides is synthesized for the first time in an aqueous electrolyte containing Co2+ ions by the method of plasma electrochemical exfoliation of graphite in its bipolar version. The high electrocatalytic activity of this composite in the oxygen reduction reaction is demonstrated with the use of a rotating disk electrode.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    V. K. Kochergin, N. S. Komarova, A. S. Kotkin, R. A. Manzhos & A. G. Krivenko

  • Moscow State University, Faculty of Chemistry, 119992, Moscow, Russia

    V. K. Kochergin

  1. He, Q.G. and Cairns, E.J., Recent progress in electrocatalysts for oxygen reduction suitable for alkaline anion exchange membrane fuel cells, J. Electrochem. Soc., 2015, vol. 162, p. F1504.
  2. Osgood, H., Devaguptapu, S.V., Xu, H., Cho, J., and Wu, G., Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media, Nano Today, 2016, vol. 11, p. 601.
  3. Osmieri, L., Pezzolato, L., and Specchia, S., Recent trends on the application of PGM-free catalysts at the cathode of anion exchange membrane fuel cells, Curr. Opin. Electrochem., 2018, vol. 9, p. 240.
  4. Low, C.T.J., Walsh, F.C., Chakrabarti, M.H., Hashim, M.A., and Hussain, M.A., Electrochemical approaches to the production of graphene flakes and their potential applications, Carbon, 2013, vol. 54, p. 1.
  5. Ejigu, A., Le, Fevre, Fujisawa, K., Terrones, M., Forsyth, A.J., and Dryfe, R.A.W., Electrochemically exfoliated graphene electrode for high-performance rechargeable chloroaluminate and dual-ion batteries, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 23261.
  6. Aghamohammadi, H., Eslami-Farsani, R., Torabian, M., and Amousa, N., Recent advances in one-pot functionalization of graphene using electrochemical exfoliation of graphite: A review study, Synth. Met., 2020, vol. 269, p. 23261.
  7. Krivenko, A.G., Manzhos, R.A., Kotkin, A.S., Kochergin, V.K., Piven, N.P., and Manzhos, A.P., Production of few-layer graphene structures in different modes of electrochemical exfoliation of graphite by voltage pulses, Instrum. Sci. Technol., 2019, vol. 47, p. 535.
  8. Vasiliev, V.P., Kotkin, A.S., Kochergin, V.K., Manzhos, R.A., and Krivenko, A.G., Oxygen reduction reaction at few-layer graphene structures obtained via plasma-assisted electrochemical exfoliation of graphite, J. Electroanal. Chem., 2019, vol. 851, p. 535.
  9. Kochergin, V.K., Manzhos, R.A., Kotkin, A.S., and Krivenko, A.G., Bipolar method of plasma electrochemical synthesis of carbon nanostructures decorated with MnOx , High Energy Chem., 2020, vol. 54, p. 227.
  10. Gardner, S.D., Singamsetty, C.S.K., Booth, G.L., He, G.R., and Pittman, C.U., Surface characterization of carbon-fibers using angle-resolved XPS and ISS, Carbon, 1995, vol. 33, p. 587.
  11. Kotkin, A.S., Kochergin, V.K., Kabachkov, E.N., Shulga, Y.M., Lobach, A.S., Manzhos, R.A., and Krivenko, A.G., One-step plasma electrochemical synthesis and oxygen electrocatalysis of nanocomposite of few-layer graphene structures with cobalt oxides, Mater. Today Energy, 2020, vol. 17, p. 587.
  12. Chuang, T.J., Brundle, C.R., and Rice, D.W., Interpretation of X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces, Surf. Sci., 1976, vol. 59, p. 413.
  13. Gautier, J.L., Rios, E., Gracia, M., Marco, J.F., and Gancedo, J.R., Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3 – xO4 (1 ≥ x ≥ 0) spinel films prepared by low-temperature spray pyrolysis, Thin Solid Films, 1997, vol. 311, p. 51.
  14. Shi, P.H., Su, R.J., Wan, F.Z., Zhu, M.C., Li, D.X., and Xu, S.H., Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals, Appl. Catal. B-Environ., 2012, vol. 123, p. 265.