Article
2021

Chalcone as Anode Material for Aqueous Rechargeable Lithium-Ion Batteries


 Chaithra Munivenkatappa Chaithra Munivenkatappa , Vijeth Rajshekar Shetty Vijeth Rajshekar Shetty , Suresh Gurukar Shivappa Suresh Gurukar Shivappa
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193520120162
Abstract / Full Text

Utilization of environmental friendly, potentially sustainable, low cost, high capacity organic electrode materials seem to be very promising for next generation rechargeable lithium-ion batteries. In fact, numerous organic materials with electrochemically active carbonyl groups have been effectively stated as electrode materials. Herein, we report an ideal organic species derived from aromatic ketone, namely chalcone (CLN). Synthesis of chalcone has been developed via Claisen–Schmidt condensation of benzaldehyde and acetophenone in the presence of alumina sulfuric acid as environmentally benign, biodegradable and reusable catalyst under solvent-free conditions followed by lithiation using ball-milling method. CLN and lithiated chalcone (LiCLN) was synthesized and characterized using 1H-NMR, XRD and IR spectroscopy techniques. Electrochemical techniques like cyclic voltammetry, galvanostatic cycling with potential limitation and potentio electrochemical impedance were carried out to study the electrochemical properties and performance in saturated aqueous Li2SO4 electrolyte. As an anode material, LiCLN showed exceptional performance such as; good reversible capacity, excellent cyclability and high rate capability when tested in half-cell configuration. The cell LiCLN | aqueous saturated Li2SO4 | LiFePO4 delivered a discharge capacity of 111.23 mA h g–1 at C/8 rate and maintains 91% capacity retention even after 1000 repeated cycles.

Author information
  • Department of Chemistry and Research Centre, NMKRV College for Women, Jayanagar, Bangalore-560 011, Karnataka, India

    Chaithra Munivenkatappa, Vijeth Rajshekar Shetty & Suresh Gurukar Shivappa

References
  1. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist’s perspective, Chem. Soc. Rev., 2009, vol. 38, p. 2565.
  2. Reddy, T.B. and Linden, D., Linden’s Handbook of Batteries, New York: McGraw Hill Professional, 2011, p. 1.3.
  3. Budde, M, H., Drillkens, J., Lunz, B., Muennix, J., Rothgang, S., Kowal, J., and Sauer, D.U., A review of current automotive battery technology and future prospects, Proc. Inst. Mech. Eng. Part D: J. Automob. Eng., 2013, vol. 227, p. 761.
  4. Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., and Bruce, P.G., Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 2012, vol. 51, p. 9994.
  5. Armand, M. and Tarascon, J.M., Building better batteries, Nature, 2008, vol. 451, pp. 652–657.
  6. Wang, G., Fu, L., Zhao, N., Yang, L., Wu, Y., and Wu, H., An aqueous rechargeable lithium battery with good cycling performance, Angew. Chem., 2007, vol. 119, p. 299.
  7. Li, W., Dahn, J.R., and Wainwright, D., Rechargeable lithium batteries with aqueous electrolytes, Science, 1994, vol. 264, p. 1115.
  8. Li, W. and Dahn, J.R., Lithium-ion cells with aqueous electrolytes, J. Electrochem. Soc., 1995, vol. 142, p. 1742.
  9. Whittingham, M.S., Lithium batteries and vathode materials, Chem. Rev., 2004, vol. 104, p. 4271.
  10. Li, L., Zhai, L., Zhang, X., Lu, J., Chen, R., Wu, F., and Amine, K., Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process, J. Power Sources, 2014, vol. 262, p. 380.
  11. Schon, T.B., DiCarmine, P.M., and Seferos, D.S., Polyfullerene electrodes for high power supercapacitors, Adv. Energy Mater., 2012, vol. 2, p. 742.
  12. Williams, D.S., Byrne, J.J., and Driscoll, J.S., A high energy density lithium/dichloroisocyanuric acid battery system, J. Electrochem. Soc., 1969, vol. 116, p. 2.
  13. Alt, H., Binder, H., Kohling, A., and Sandstede, G., Investigation into the use of quinone compounds for battery cathodes, Electrochim. Acta, 1972, vol. 17, p. 873.
  14. Qingli, Z., Weikun, W., Anbang, W., Zhongbao, Y., and Keguo, Y., Preparation of the tetrahydro-hexaquinone as a novel cathode material for rechargeable lithium batteries, Mater. Lett., 2014, vol. 117, p. 290.
  15. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., and Heeger, A.J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, J. Chem. Soc., Chem. Commun., 1977, no. 16, p. 578.
  16. Yamaki, J.I. and Yamaji, A., Cathode characteristics of organic electron acceptors for lithium batteries, J. Electrochem. Soc., 1982, vol. 129, p. 578.
  17. Nigrey, P.J., MacInnnes, D.J., Nairns, D.P., and MacDiarmid, A.G., Lightweight rechargeable storage batteries using polyacetylene, (CH) as the cathode-active material, J. Electrochem. Soc., 1981, vol. 128, p. 1651.
  18. Novak, P., Muller, K., Santhanam, K.S.V., and Haas, O., Electrochemically active polymers for rechargeable batteries, Chem. Rev., 1997, vol. 97, p. 201.
  19. Pasquali, M., Pistoia, G., Boschi, T., and Tagliatesta, P., Redox mechanism and cycling behaviour of nonylbenzo-hexaquinone electrodes in Li cells, Solid State Ionics, 1987, vol. 23, p. 261.
  20. Boschi, T., Pappa, R., Pistoia, G., and Tocci, M., On the use of nonylbenzo-hexaquinone as a substitute for monomeric quinones in non-aqueous cells, J. Electroanal. Chem., 1984, vol. 176, pp. 235–242.
  21. Zhao, Q., Zhu, Z., and Jun, C., Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries, J. Adv. Mater., 2017,vol. 29, p. 1.
  22. Xu, Q., Yang, Z., Yin, D., and Zhang, F., Synthesis of chalcones catalyzed by a novel solid sulfonic acid from bamboo, Catal. Commun., 2008, vol. 9, p. 1579.
  23. Nagendrappa, G., Organic synthesis under solvent-free condition: an environmentally benign procedure-II, Resonance, 2002, vol. 7, p. 59.
  24. Chtourou, M., Abdelhédi, R., Frikha, M.H., and Trabelsi, M., Solvent free synthesis of 1,3-diaryl-2-propenones catalyzed by commercial acid-clays under ultrasound irradiation, Ultrason. Sonochem., 2010, vol. 17, p. 246.
  25. Perozo-Rondón, E., Martín-Aranda, R.M., Casal, B., Durán-Valle, C.J., Lau, W.N., Zhang, X.F., and Yeung, K.L., Sonocatalysis in solvent free conditions: an efficient eco-friendly methodology to prepare chalcones using a new type of amino grafted zeolites, Catal. Today, 2006, vol. 114, p. 183.
  26. Lahyani, A., Chtourou, M., Frikha, M.H., and Trabelsi, M., Amberlyst-15 and Amberlite-200C: efficient catalysts for aldol and cross-aldol condensation under ultrasound irradiation, Ultrason. Sonochem., 2013, vol. 20, p. 1296.
  27. Manjunatha, H., Venkatesha, T.V., and Suresh, G.S., Kinetics of electrochemical insertion of lithium ion into LiFePO4 from aqueous 2 M Li2SO4 solution studied by potentiostatic intermittent titration technique, Electrochim. Acta, 2011, vol. 58, p. 247.
  28. Shaterian, H.R., Hosseinian, A., Yarahmadi, H., and Ghashang, M., Alumina sulfuric acid: an efficient heterogeneous catalyst for the synthesis of amidoalkyl naphthols, Lett. Org. Chem., 2008, vol. 5, p. 290.
  29. Zeng, R., Li, X., Qiu, Y., Li, W., Yi, J., Lu, D., Tan, C., and Xu, M., Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries, Electrochem. Commun., 2010, vol. 12, p. 1253.
  30. Thrunarayanan, G., Gopalakrishnan, M., and Vanangamudi, G., IR and NMR spectral studies of 4-bromo-1-naphthyl chalcones-assessment of substituent effects, Spectrochim. Acta, Part A, 2007, vol. 67, p. 1106.
  31. Solcaniova, E., Toma, S., and Gronowitz, S., Investigation of substituent effects of chalcones by 13C NMR spectroscopy, Magn. Reson. Chem., 1976, vol. 8, p. 439.
  32. Nasir, A.B.S., Jasamai, M., Jantan, I., and Ahmad, W., Review of methods and various catalysts used for chalcone synthesis, Mini-Rev. Org. Chem., 2013, vol. 10, p. 73.
  33. Solcaniova, E., Toma, S., and Gronowitz, S., Investigation of substituent effects of chalcones by 13C NMR spectroscopy, Org. Magn. Reson., 1976, vol. 8, p. 439.
  34. Durairaj, M., Sivakumar, S., and Gnanendra Shanmugam, Chemical synthesis of chalcones by Claisen-Schmidt condensation reaction and its characterization, Int. J. Res. Appl. Sci. Eng. Technol., 2018, vol. 6, p. 2311.
  35. Vijeth, R.S., Suresh, S.G., Ramaiah, M., Mahadevan, M.K., and Doddahalli, H.N., Novel synthetic approach for 1,4-dihydroxyanthraquinone and the development of its lithiated salts as anode materials for aqueous rechargeable lithium-ion batteries, New J. Chem., 2015, vol. 39, p. 8534.
  36. Yancheng, G., Yuzhen, C., and Hanjun, M., Inclusion mechanism and heat stability of the complex of 4'-hydroxychalcone and hydroxypropyl-β-cyclodextrin, Trop. J. Pharm. Res., 2014, vol. 13, pp. 1971–1977; Busetti, V., Mammi, M., and Carazzolo, G., A three-dimensional refinement of crystalline structure of trioxane, Z. Kristallogr. – Cryst. Mater., 1964, vol. 119, p. 1.
  37. Lin, B.S., Jie Shen, Feng Lu., Xiao Dan Liu, Li Zhu, and Xiao Qin Liu, Fabrication of solid strong bases with amolecular-level dispersion of lithium sites and high basic catalytic activity, Chem. Commun., 2014, vol. 50, pp. 11299–11302; Thomas, J.O., Hydrogen bond studies. LXI. An X-ray diffraction study of the isotope effect in lithium hydrogen oxalate monohydrate, LiHC2O4·H2O, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1972, vol. 7, p. 2037.
  38. Changyong, L., Feng, X., Xingxing, C., Junda, T., Yanliang, L., Zhangwei, C., Changshi, L., and Jun Ma, Comparative study on the electrochemical performance of LiFePO4 cathodes fabricated by low temperature 3D printing, direct ink writing and conventional roller coating process, Ceram. Int., 2019, vol. 45, p. 14188.
  39. Lin, Z., Liu, Y., Yao, Y., Hildreth, O.J., Li, Z., Moon, K., and Wong, C., Superior capacitance of functionalized graphene, J. Phys. Chem. C, 2011, vol. 115, p. 7120.
  40. Cheng, Z., Yida, D., Wenbin, H., Jinli, Q., Lei, Z., and Jiujun, Z., A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev., 2015, vol. 44, p. 7484.
  41. Mahesh, K.C., Suresh, G.S., and Venkatesha, T.V., Electrochemical behavior of Li[Li0.2Co0.3Mn0.5]O2 as cathode material in Li2SO4 aqueous electrolyte, J. Solid State Electrochem., 2012, vol. 16, p. 3559.
  42. Jayalakshmi, M., Mohan Rao, M., and Scholz, F., Electrochemical behavior of solid lithium manganate (LiMn2O4) in aqueous neutral electrolyte solutions, Langmuir, 2003, vol. 19, p. 8403.
  43. Nan Yan, Xuhui Zhou, Yan Li, and Fang Wang, Fe2O3 nanoparticles wrapped in multi-walled carbon nanotubes with enhanced lithium storage capability, Sci. Rep., 2013, vol. 3, p. 1.
  44. Vijeth, R.S., Suresh, G.S., and Mahadevan, K.M., Electrochemical activities of melamine and its applications in aqueous rechargeable lithium-ion batteries, J. Adv. Chem. Sci., 2016, vol. S1, p. 263.
  45. Mahesh, K.C., Manjunatha, H., Venkatesha, T.V., and Suresh, G.S., Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy, J. Solid State Electrochem., 2012, vol. 16, p. 3011.
  46. Xiang, Z., Vanchiappan, A., Palaniswamy, S.K., Huihui, L., Sundaramuthy, J., Seeram, R., and Srinivasan, M., Synthesis of TiO2 hollow nanofibers by co-axial eletrospinning and its superior lithiumstorage capability in full-cell assembly with olivine phosphate, Nanoscale, 2013, vol. 5, p. 5973.
  47. Zhiping, S., Yumin, Q., Xizheng, L., Tao, Z., Yanbei, Z., Haijun, Y., Minoru, O., and Haoshen, Z., A quinone-based oligomeric lithium salt for superior Li-organic batteries, Energy Environ. Sci., 2014, vol. 7, p. 4077.
  48. Steven, R., Daniel, B., Torbjorn, G., and Kristina, E., Improving the electrochemical performance of organic Li-ion battery electrodes, Chem. Commun., 2013, vol. 49, p. 1945.
  49. Rongrong, J., Tao, H., Yang, T., and Jiali Liu, Factorsinfluencing MnO2/multi-walled carbon nanotubes composite’s electrochemical performance as supercapacitor electrode, Electrochim. Acta, 2009, vol. 54, p. 7173.
  50. Liao, Y., Lei, G., Xiaohua, Z., and Jinhua, C., Nitrogen-doped hollow carbon spheres with enhanced electrochemical capacitive properties, Mater. Res. Bull., 2012, vol. 47, pp. 1625–1629.
  51. Kai Liu, Jianming, Z., Guiming, Z., and Yong, Y., Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide)(PDBS) as a cathode material for lithium ion batteries, J. Mater. Chem., 2011, vol. 21, p. 4125.
  52. Young, J.O., Jung, J.Y., Yong, I.K., Jae, K.Y., Ha, N.Y., Jong, H.K., and Seung, B.P., Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, Electrochim. Acta, 2014, vol. 116, p. 118.
  53. Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P.L., and Simon, P., Ultrahigh-power micrometre-size supercapacitors based on onion-like carbon, Nat. Nanotechnol., 2010, vol. 5, p. 651.
  54. Das, S.R., Majumder, S.B., and Katiyar, R.S., Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films, J. Power Source, 2005, vol. 139, p. 261.
  55. Mundinamani, S.P. and Rabinal, M.K., Cyclic voltammetric studies on the role of electrode, electrode surface modification and electrolyte solution of an electrochemical cell, IOSR J. Appl. Chem., 2018, vol. 9, p. 45.
  56. Yasuyuki, I., Hideyuki, N., Ko, F., Ryohei, K., Masayoshi, N., et al., Isolation of hypervalent group-16 radicals and their application in organic-radical catteries, J. Am. Chem. Soc., 2016, vol. 138, p. 479.
  57. Youngjoon, S. and Arumugam, M., Origin of the high voltage capacity of spinel lithium manganese oxides, Electrochim. Acta, 2003, vol. 48, p. 3583.
  58. Haegyeom, K., Ji, E.K., Byungju Lee, Jihyun, H., Minah, L., Soo, Y.P., and Kisuk, K., High energy organic cathode for sodium rechargeable batteries, Chem. Mater., 2015, vol. 27, p. 7258.
  59. He, P., Liu, J.L., Cui, W.J., Luo, J.Y., and Xia, Y.Y., Investigation on capacity fading of LiFePO4 in aqueous electrolyte, Electrochim. Acta, 2011, vol. 56, p. 2351; Song, G.-M., Wu, Y., Liu, G., and Xu, Q., Influence of AlF3 coating on the electrochemical properties of LiFePO4/graphite Li-ion batteries, J. Alloys Compd., 2009, vol. 487, p. 214; Artur, T., Yong, N., Si, H.O., Yeong, D.P., and Junyoung, M., Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 14, p. 12391; Jia, Y.L., Wang, J.C., Ping, H., and Yong, Y.X., Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte, Nat. Chem., 2010, vol. 2, p. 760; Yamada, A., Chung, S.C., and Hinokuma, K., Optimized LiFePO4 for lithium battery cathodes, J. Electrochem. Soc., 2001, vol. 148, no. 3, p. A224.
  60. Luo, J.Y. and Xia, Y.Y., Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability, Adv. Funct. Mater., 2007, vol. 17, p. 3877.
  61. Meixiang, L., Fen Zhang, Yiwen Wu, Mujuan Chen, Chunfeng Yao, Junmin Nan, Dong Shu, Ronghua Zeng, Heping Zeng, and Shu Lei Chou, Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries, Sci. Rep., 2016, vol. 6, p. 1.
  62. Zhiping, S., Yumin, Q., Xizheng, L., Tao, Z., Yanbei, Z., Haijun, Y., Minoru, O., and Haoshen, Z., A quinone-based oligomeric lithium salt for superior Li-organic batteries, Energy Environ. Sci., 2014, vol. 7, p. 4077.
  63. Huang, W., Zhu, Z., Wang, L., Wang, S., Li, H., Tao, Z., Shi, J., Guan, L., and Chen, J., Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte, J. Angew. Chem. Int. Ed., 2013, vol. 52, p. 9162.
  64. Wang, W., Zhu, Y., Hou, Y., Liu, L., Wu, Y., Loh, K.P., Zhang, H., and Zhud, K., Improved cathode materials for microbial electrosynthesis, Energy Environ. Sci., 2013, vol. 6, p. 217.
  65. Sinha, N.N., Ragupathy, P., Vasan, H.N., and Munichandraiah, N., Electrochemical characterization of submicron size particles of LiMn2O4 in aqueous electrolytes, Int. J. Electrochem. Soc., 2008, vol. 3, p. 691.
  66. Mahesh, K.C., Manjunatha, H., Venkatesha, T.V., and Suresh, G.S., Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy, J. Solid State Electrochem., 2012, vol. 16, p. 3011.
  67. Chen, W.C., Wen, T.V., and Gopalan, A., The inductive behavior derived from hydrolysis of polyaniline, Electrochim. Acta, 2002, vol. 47, p. 4195.
  68. Shivashankaraiah, R.B., Manjunatha, H., Mahesh, K.C., Suresh, G.S., and Venkatesha, T.V., Material for aqueous rechargeable lithium batteries electrochemical characterization of LiTi2(PO4)3 as anode, J. Electrochem. Soc., 2012, vol. 7, p. A1074.
  69. Rangaswamy, P., Vijeth, R.S., Suresh, G.S., Mahadevan, K.M., and Nagaraju, H.D., Enhanced electrochemical performance of LiVPO4F/f-graphenecomposite electrode prepared via ionothermal process, J. Appl. Electrochem., 2017, vol. 47, p. 1.