Article
2021

Composite Pt/(SnO2/C) and PtSnNi/C Catalysts for Oxygen Reduction and Alcohol Electrooxidation Reactions


D. K. Mauer D. K. Mauer , S. V. Belenov S. V. Belenov , L. M. Skibina L. M. Skibina , V. E. Guterman V. E. Guterman
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521060069
Abstract / Full Text

The electrodeposition of tin and tin-nickel on a highly dispersed carbon material is used to obtain composite supports. These composite supports were used in the Pt(0) nanoparticles deposition from Pt(IV) solution by chemical reduction. The composition, structure, and activity of the obtained Pt(SnO2/C) and PtSnNi/C catalysts in the oxygen reduction and alcohol electrooxidation reactions were studied. The composite-support-based platinum catalysts exhibit higher activity in the reactions of alcohols electrooxidation in comparison with the commercial Pt/C analogue. Trimetallic PtSnNi/C catalysts are the most promising materials for the electrooxidation of alcohols.

Author information
  • Southern Federal University, Rostov-on-Don, Russia

    D. K. Mauer, S. V. Belenov, L. M. Skibina & V. E. Guterman

References
  1. Ioroi, T., Siroma, Z., Yamazaki, S., and Yasuda, K., Electrocatalysts for PEM Fuel Cells, Advanced Energy Mater., 2018, vol. 9, no. 23, p. 1801284.
  2. Thompsett, D., Catalysts for the Proton Exchange Membrane Fuel Cell, Ed.: Vielstich, W., New York: Wiley, 2003, vol. 3, no. 6, p. 1.
  3. Zhang, J., Wang, X., Wu, C. Wang, H, Yiand, B., and Zhang, H., Preparation and characterization of Pt/C catalysts for PEMFC cathode: effect of different reduction methods, React. Kinet. Catal. Lett., 2004, vol. 83, no. 2, p. 229.
  4. Chen, J., Jiang, C., Yang, X. Feng, L., B. Gallogly, E., and Wang, R., Studies on how to obtain the best catalytic activity of Pt/C catalyst by three reduction routes for methanol electrooxidation, Electrochem. Commun., 2011, vol. 13, no. 4, p. 314.
  5. Prabhuram, J., Zhao, T.S., Wong, C.W., and Guo, J.W., Synthesis and physical/electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells, J. Power Sources, 2004, vol. 134, p. 1.
  6. Guterman, V.E., Lastovina, T.A., Belenov, S.V., Tabachkova, N.Yu., Vlasenko, V.G., Khodos, I.I., and Balakshina, E.N., PtM/C (M = Ni, Cu, or Ag) electrocatalysts: Effects of alloying components on morphology and electrochemically active surface areas, J. Solid State Electrochem., 2014, vol. l18, no. 5, p. 1307.
  7. Guterman, V.E., Belenov, S.V., Lastovina, T.A., Fokina, E.P., Prutsakova, N.V., and Konstantinova, Ya.B., Microstructure and electrochemically active surface area of PtM/C electrocatalysts, Russ. J. Electrochem., 2011, vol. 47, p. 933.
  8. Petrii, O.A., Electrosynthesis of nanostructures and nanomaterials, Uspekhi khimii, 2015, vol. 84, p.159.
  9. Yohannes, W., Belenov, S.V., Guterman, V.E., Skibina, L.M., Volotchaev, V.A., and Lyanguzov, N.V., Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid, J. Appl. Electrochem., 2015, vol. 45, p. 623.
  10. Leontyev, I.N., Kuriganova, A.B., Kudryavtsev, Y., Dkhil, B., and Smirnova, N.V., New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells, Appl. Catal. A, 2012, vols. 431–432, p. 120.
  11. Moffat, T.P., Mallett, J.J., and Hwang, Sun-Mi., Oxygen Reduction Kinetics on Electrodeposited Pt, Pt100 – xNix, and Pt100 – xCox, J. Electrochem. Soc., 2009, vol. 156, p. 238.
  12. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis, Appl. Catal. B: Environmental, 2005, vol. 56, p. 9.
  13. Sharma, S. and Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts–A review, J. Power Sources, 2012, vol. 208, p. 96.
  14. Zhang, M., Yan, Z., Li, Y., Jing, J., and Xie, J., Preparation of cobalt silicide on graphene as Pt electrocatalyst supports for highly efficient and stable methanol oxidation in acidic media, Electrochim. Acta, 2015, vol. 161, p. 48.
  15. Zhao, R., Fu, G., Chen, Z., Tang, Y., Wang, Y., and Huang, S., Novel strategy for the synthesis of hollow Pt–Cu tetradecahedrons as an efficient electrocatalyst toward methanol oxidation, Cryst. Eng. Comm., 2019, vol. 21, p. 1903.
  16. Guterman, V.E., Novomlinsky, I.N., Skibina, L.M., and Mauer, D.K., Russia Patent 2656914, 2018.
  17. Guterman, V.E., Novomlinsky, I.N., Alekseenko, A.A., Belenov, S.V., Tsvetkova, G.G., and Balakshina, E.N., Russia Patent 2616190, 2017.
  18. Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., Electrochemical dispersion technique for preparation of hybrid MOx–C supports and Pt/MOx–C electrocatalysts for low temperature fuel cells, J. Appl. Electrochem., 2016, vol. 46, no. 12, p. 1245.
  19. Saha, M.S., Li, R., Cai, M., and Suna, X., High Electrocatalytic Activity of Platinum Nanoparticles on SnO2 Nanowire-Based Electrodes, Electrochem. Solid-State Lett., 2007, vol. 10, no. 8, p. 130.
  20. Lee, J.H. and Park, S.J.J., Nanoscaled oxide thin films for energy conversion, Am. Ceram. Soc., 1993, vol. 76, p. 777.
  21. Williams, G. and Coles, G.S.V., Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique, J. Mater. Chem., 1998, vol. 8, p. 1657.
  22. Willett, M.J., Burganos, V.N., Tsakiroglou, C.D., and Payatakes, A.C., Gas sensing and structural properties of variously pretreated nanopowder tin(IV) oxide samples, Sens. Actuators B, 1998, vol. 53, p. 76.
  23. Zhang, J. and Gao, L., Synthesis of SnO2 Nanoparticles by the Sol–gel Method From Granulated Tin, Chem. Lett., 2003, vol. 32, p. 458.
  24. De Monredon, S., Cellot, A., Ribot, F., Sanchez, C., Armelao, L., Gueneau, L., and Delattre, L., Synthesis and characterization of crystalline tin oxide nanoparticles, J. Mater. Chem., 2002, vol. 12, p. 2396.
  25. Kumar, P., Khadtare, S., Park, J., and Yadav, B.C., Fabrication of leaf shaped SnO2 nanoparticles via sol–gel route and its application for the optoelectronic humidity sensor, Mater. Lett., 2020, vol. 278, p. 128451.
  26. Song, K.C. and Kang, Y., Preparation of high surface area tin oxide powders by a homogeneous precipitation method, Mater. Lett., 2000, vol. 42, p. 283.
  27. Meiling, Dou, Ming, Hou, Dong, Liang, Wangting, Lu, Zhigang, Shao, and Baolian, Yi, SnO2 nanocluster supported Pt catalyst with high stability for proton exchange membrane fuel cells, Electrochim. Acta, 2013, vol. 92, p. 468.
  28. Zhang, K., Feng, C., He, B., Dong, H., Dai, W., Lu H., and Zhang, X., An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction, J. Electroanal. Chem., 2016, vol. 781, p. 198.
  29. Jiang, L. Colmenares, L. Jusys, Z., Sun, G., and Behm, R., Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt : Sn ratio, Electrochim. Acta, 2007, vol. 53, p. 377.
  30. Gharibi, H., Sadeghi, S., and Golmohammadi, F., Electrooxidation of Ethanol on highly active and stable carbon supported PtSnO2 and its application in passive direct ethanol fuel cell: Effect of tin oxide synthesis method, Electrochim. Acta, 2016, vol. 190, p. 1100.
  31. Li, H., Sun, G., Cao, L., Jiang, L., and Xin, Q., Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation, Electrochim. Acta, 2007, vol. 52, no. 24, p. 6622.
  32. Kim, I., Bong, S., Woo, S., Mahajan, R. K., and Kim, H., Highly active 40 wt % PtRu/C anode electrocatalysts for PEMFCs prepared by an improved impregnation method, Int. J. Hydrogen Energy, 2011, vol. 36, no. 2, p. 1803.
  33. Shi, Y., Zhu, W., Shi, H., Liao F., Fan, Z., and Shao, M., Mesocrystal PtRu supported on reduced graphene oxide as catalysts for methanol oxidation reaction, J. Colloid Interface Sci., 2019, vol. 557, p. 729.
  34. Parreira, L.S., da Silva, J.C.M., D’Villa-Silva, M., Simões, F.C., Garcia, S., Gaubeur, I., Cordeiro, M.A.L., Leite, E.R., and dos Santos, M.C., PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study, Electrochim. Acta., 2013, vol. 96, p. 243.
  35. Bonesi, A., Garaventa, G., Triaca, W., and Castroluna, A., Synthesis and characterization of new electrocatalysts for ethanol oxidation Int. J. Hydrogen Energy, 2008, vol. 33, № 13, p. 3499.
  36. Parreira, L.S., Antoniassi, R.M., Freitas, I.C., de Oliveira, D.C., Spinacé, E.V., Camargo, P.H.C., and dos Santos, M.C., MWCNT–COOH supported PtSnNi electrocatalysts for direct ethanol fuel cells: Low Pt content, selectivity and chemical stability, Renewable Energy, 2019, vol. 143, p. 1397.
  37. Flórez-Montaño, J., García, G., Guillén-Villafuerte, O., Rodríguez, J.L., Planes, G.A., and Pastor, E., Mechanism of ethanol electrooxidation on mesoporous Pt electrode in acidic medium studied by a novel electrochemical mass spectrometry set-up, Electrochim. Acta, 2016, vol. 209, p. 121.
  38. Petrii, O.A., The progress in understanding the mechanisms of methanol and formic acid electrooxidation on platinum group metals (a review), Russ. J. Electrochem., 2019, vol. 55, p. 1.
  39. Novomlinskiy, I. N., Guterman, V.E., Danilenko, M.V., and Volochaev, V.A., Platinum Electrocatalysts Deposited onto Composite Carbon Black–Metal Oxide Support, Russ. J. Electrochem., 2019, vol. 55, p. 690.
  40. Zenin, V.V., Spiridonov, B.A., Berezina, N.N., and Kochergin, A.V., Study of electrodeposition and structure of tin–nickel alloy coatings (in Russian), Tekhnologii v elektron. Promyshlennosti, 2007, vol. 7, p. 32.
  41. Suryanarayana, C. and Norton, M.G., X-ray diffraction: a practical approach Suryanarayana C, Springer Sci. Business Media, 2013, p. 273.
  42. Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N.R., Moeck, P., Downs, R.T., and Le Bail, A., Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Res., 2012, vol. 40, no. D1, p. 420.
  43. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Y., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts (in Russian), Nanotechnologies in Russia, 2016, vol. 11, p. 287.
  44. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness, J. Electrochem. Soc., 2015, vol. 162, p. 1384.
  45. Kim, J.H., Choi, S.M., Nam, S.H., Seo, M.H., Choi, S.H., and Kim, W.B., Influence of Sn content on PtSn/C catalysts for electrooxidation of C1–C3 alcohols: synthesis, characterization, and electrocatalytic activity, Appl. Catal. B, 2008, vol. 82, p. 89.
  46. Colmati, F., Antolini, E., and Gonzalez, E.R., Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: effect of thermal treatment, Appl. Catal. B, 2007, vol. 73, p. 106.
  47. Antolini, E., Salgado, J.R.C., and Gonzalez, E.R., Carbon supported Pt75M25 (M 1/4 Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells, J. Electroanal. Chem., 2005, vol. 580, p. 145.
  48. Correa, P.S., da Silva, E.L., da Silva, R.F., Radtke, C., Moreno, B., Chinarro, E., and Malfatti, C.F., Effect of decreasing platinum amount in Pt–Sn–Ni alloys supported on carbon as electrocatalysts for ethanol electrooxidation, Int. J. Hydrogen Energy, 2012, vol. 37, no. 11, p. 9314.
  49. Beyhan, S., Léger, J.-M., and Kadırgan, F., Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell, Appl. Catal. B: Environmental, 2013, vol. 130, p. 305.
  50. Kumeda, T., Otsuka, N., Tajiri, H., Sakata, O., Hoshi, N., and Nakamura, M., Interfacial structure of PtNi surface alloy on Pt (111) electrode for oxygen reduction reaction, ACS Omega, 2017, vol. 2, p. 1858.
  51. Stamenković, V., Schmidt, T.J., Ross, P.N., and Marković, N.M., Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces, J. Phys. Chem., 2002, vol. 106, p. 11970.
  52. Jenkins, R. and Snyder, R.L., Introduction to X-ray Powder Diffractometry, Wiley, 1996.
  53. Travitsky, N., Ripenbein, T., Golodnitsky, D., Rosenberg, Y., Burshtein, L., and Peled, E., Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells, J. Power Sources, 2006, vol. 161, p. 782.
  54. Wiltshire, R.J.K., King, C.R., Rose, A., Wells, P.P., Davies, H., Hogarth, M.P., Thompsett, D., Theobald, B., Mosselmans, F.W., Roberts, M., and Russell, A.E., Effects of composition on structure and activity of PtRu/C catalysts, Phys. Chem. Chem. Phys., 2009, vol. 11, no. 13, p. 2305.
  55. Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.
  56. Chen, Y. and Wang, J., Atomic layer deposition assisted Pt–SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells, Int. J. Hydrogen Energy, 2011, vol. 36, no. 17, p. 11085.
  57. Ruiz Camacho, B., Morais, C., Valenzuela, M.A., and Alonso-Vante, N., Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites, Catal. Today, 2013, vol. 202, p. 36.
  58. Khorasani-Motlagh, M., Noroozifar, M., and Ekrami-Kakhki, M.-S., Investigation of the nanometals (Ni and Sn) in platinum binary and ternary electrocatalysts for methanol electrooxidation, Int. J. Hydrogen Energy, 2011, vol. 36, p. 11554.
  59. Menshchikov, V., Alekseenko, A., Guterman, V., Nechitailov, A., Glebova, N., Tomasov, A., Spiridonova, O., Belenov, S., Zelenina, N., and Safronenko, O., Effective platinum–copper catalysts for methanol oxidation and oxygen reduction in proton-exchange membrane fuel cell, Nanomaterials, 2020, vol. 10, no. 4, article No. 742.