Article
2022

Cathodic Reduction of Zinc Oxide in Alkaline Electrolyte


Yu. L. Gunko Yu. L. Gunko , V. A. Kozyrin V. A. Kozyrin , O. L. Kozina O. L. Kozina , E. Yu. Ananieva E. Yu. Ananieva , M. G. Mikhalenko M. G. Mikhalenko
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193522010050
Abstract / Full Text

The reduction of zinc oxide in a limited volume of the alkaline electrolyte is studied. Methods of chronopotentiometry, chronoamperometry, and chronovoltammetry showed the recovery of zinc oxide in a minimum volume of electrolyte to be a complex process, not obeying the mathematical dependences for the limiting stages of electrochemical processes known in literature. A mathematical model of the zinc-oxide layer recovery in terms of the minimum amount of alkaline electrolyte is suggested. The model takes into account the zincate- and hydroxyl-ion transport in the alkaline electrolyte, the zinc oxide dissolution, and changes of structural characteristics in the surface oxide layer. The reduction of zinc oxide in a limited volume of alkaline electrolyte is shown to be largely determined by the rate of the chemical reaction of zinc oxide dissolution. The applicability of the revealed regularities of the zinc oxide reduction in zincate solutions to the describing of the zinc electrode charging process in alkaline power sources is demonstrated.

Author information
  • Alekseev State Technical University at Nizhny Novgorod, Institute of Physical and Chemical Technologies and Materials Science, 603950, Nizhny Novgorod, Russia

    Yu. L. Gunko, V. A. Kozyrin, O. L. Kozina, E. Yu. Ananieva & M. G. Mikhalenko

References
  1. Korovin, N.V. and Skundin, A.M., Chemical Power Sources: A Handbook (in Russian), Moscow: Mos. Energ. Inst., 2003.
  2. Edison, T.A., Reversible galvanic battery, US Patent 684204, 1901.
  3. Drumm, J.J., Storage battery, US Patent 1955115, 1934.
  4. Arhangel’skaya, Z.P., Flerov, V.N., and Reshetova G.N., Trends and Perspectives of R&D in Nickel–Zinc Batteries (in Russian), Moscow: Informelektro, 1978.
  5. Acmepower. URL: http://acmepower.ru/.
  6. Shenzhen BetterPower Battery Co., LTD. URL: http://en.betterpower.com.cn/.
  7. VARTA Microbattery – Website. URL: http:// www.varta-microbattery.com/en.html.
  8. Bychkovskij, S.K., Baharev, S.A., and Nikiforov, V.I., High-performance air–zinc cell, Pat. 2349991 (Russia), 2009.
  9. Shkarupo, S.P., Oxygen–Zinc power source, Pat. 128783 (Russia), 2012.
  10. Diggle, J.W., Despic, A.R., and Bockris, J.O’M., The mechanism of the dendritic crystallization of zinc, Int. J. Electrochem. Sci., 1969, vol. 116, no. 11, p. 1503.
  11. Bazarov, S.P., Bachaev, A.A., Elkind, K.M., Flerov, V.N., Arkhangelskaya, Z.P., and Reshetova, G.N., Redistribution of active mass in zinc electrodes during the cycling of nickel–zinc batteries, Collection of Scientific Papers of All-Russ. Res. Battery Inst. (in Russian), Leningrad: Energoatomizdat, 1983.
  12. Butler, J.N., Ionic Equilibrium: A Mathematical Approach, Reading, MA: Addiction, Wesley, 1964.
  13. Farr, G.P.G. and Hampson, M.A., Evolution of characteristics of exchange reactions. 1. Exchange reactions at a solid zinc electrode in alkaline, J. Electroanal. Chem., 1967, vol. 13, no. 4, p. 433.
  14. Dirkse, T.P. and Hampson, N.A., The Zn(II)/Zn exchange reactions in KOH solution. III. Exchange current measurements using the potentiostatic method, Electrochim. Acta, 1972, vol. 17, no. 6, p. 1113.
  15. Gerischer, H., Kinetik der Entladung einfacher und komplexer Zinc Ionen, Z. Physik. Chem., 1953, vol. 202, p. 302.
  16. Witt, P.H. and Bard, A.J., The mechanism of the zinc(II)-zinc amalgam electrode reaction in alkaline media as studied by chronocoulometric and voltametric techniques, J. Electrochem. Soc., 1972, vol. 119, no. 12, p. 1665.
  17. Revina, E.M., Rotinyan, A.L., and Shoshina, I.A., Behavior of an active zinc electrode in alkaline and zincate solutions, Zh. Prikl. Khim. (in Russian), 1973, vol. 46, no. 12, p. 2654.
  18. Bockris, J.O.M., Nagy, Z., and Damjanovic, A., On the deposition and dissolution of zinc in alkaline solutions, J. Electrochem. Soc., 1972, vol. 119, no. 3, p. 285.
  19. Epelboin, J., Ksouri, M., Wiart, E., and Lejay, R., The mechanism of the zinc electrode reaction in alkali, Electrochim. Acta, 1975, vol. 20, no. 8, p. 603.
  20. Ioffe, A.F., Semiconductors (in Russian), Moscow: Akademkniga, 1955.
  21. Hladik, O. and Schwabe, K., Untersuchungen zum nachweise der direkten Reduktion von Zincoxide in der festen Phase, Electrochim. Acta, 1970, vol. 15, no. 4, p. 635.
  22. Osche, A.I. and Bagotsky, V.S., On the mechanism of cathodic reduction of oxide phase layers on a zinc electrode, Zh. Fiz. Khim. (in Russian), 1961, vol. 35, no. 7, p. 1641.
  23. Dirkse, T.P., Composition and properties of saturated solutions of ZnO in KOH, J. Electrochem. Soc., 1959, vol. 106, no. 2, p. 154.
  24. Drazic, D. and Nagy, Z., Investigation of direct reduction of zinc oxide alkaline electrolytes, J. Electrochem. Soc., 1971, vol. 118, no. 2, p. 255.
  25. Landsberg, H., Fürtig, H., and Müller, M., Zum anodischen Verhalten des Zink und Zinkoksid in Natronlange, Z. Phys. Chem., 1961, vol. 216, no. 3/4, p. 199.
  26. Kudryavtsev, T.N., Beck, R.Yu., and Kushevich, I.F., On the causes of local spongy formations at the cathode in zinc electrolytes, Zh. Prikl. Khim. (in Russian), 1957, vol. 30, no. 7, p. 1093.
  27. Flerov, V.N., The effect of aging on the cathode process in zinc electrolytes. Proc. of the Zhdanov State Res Inst. Chem. Chem. Technol. Substances (in Russian), 1961, no. 13, vol. 5, p. 56.
  28. Romanov, V.V., Investigation of the causes of zincate sponge formation during the electrolysis of zincate solutions, Zh. Prikl. Khim. (in Russian), 1963, vol. 36, no. 5, p. 1057.
  29. Stender, R.V. and Zholudev, M.D., Electrolysis of sodium zincate solutions, Zh. Prikl. Khim. (in Russian), 1959, vol. 32, no. 6, p. 1296.
  30. Elkind, K.M., Naumov, V.I., and Mikhalenko, M.G., On the mechanism of cathodic isolation of zinc from potassium-zincate electrolytes, Izv VUZov SSSR. Series: Chem. Chem. Technol. (in Russian), 1977, vol. 20, no. 6, p. 870.
  31. Elkind, K.M., Mikhalenko, M.G., and Flerov, V.N., Mechanism of cathode sponge formation during zinc deposition from zinc electrolytes, Izv VUZov SSSR. Series: Chem. Chem. Technol. (in Russian), 1982, vol. 25, no. 7, p. 862.
  32. Moskvichev, A.A., Kozina, O.L., Gunko, Yu.L., Mikhalenko, M.G., and Moskvichev, A.N., Mathematical simulation of charging of process for porous cadmium electrode in alkaline batteries, Russ. J. Electrochem., 2011, vol. 47, p. 825.
  33. Mikhalenko, M.G. and Flerov, V.N., Electrochemical determination of the diffusion rate of zincate through hydrate-cellulose separation, Sov. Electrochem., 1972, vol. 8, no. 1, p. 81.
  34. Reshetova, G.N. and Arkhangelskaya, Z.P., Makrokinetika protsessov na zinkovom elektrode alkaline sources of current, Coll. Works on Chem. power sources (in Russian), 1975, no. 10, 268 p.]
  35. Sunni, W.G. and Bennion, D.N., Transient and failure analyses of the porous zinc electrode, J. Electrochem. Soc., 1980, vol. 127, p. 2007.
  36. Murashova, I.B., Pomosov, A.V., and Tishkina, A.V., Dynamic model of dispersed sediment development under galvanostatic conditions. Influence of the nature of the discharged metal on the dynamics of dendrite growth, Sov. Electrochem., 1982, vol. 18, p. 449.
  37. Ostanina, T.N., Rudoi, V.M., Patrushev, A.V., Darintseva, A.B., and Farlenkov, A.S., Modelling the dynamic growth of copper and Zink dendritic deposits under the galvanostatic electrolysis conditions, J. Electroanal. Chem., 2015, vol. 750, p. 9.
  38. Murashova, I.B., Pomosov, A.V., and Edeleva, N.A., Dynamic model of dispersed sediment development under galvanostatic conditions, Effect of electrolyte acidity on the kinetics of dendrite growth, Sov. Electrochem., 1979, vol. 15, no. 2, p. 182.