Article
2021

Conductivity of R1 − yPbyF3 – y (R = Pr, Nd) Solid Electrolytes with the Tysonite Structure


N. I. Sorokin N. I. Sorokin , D. N. Karimov D. N. Karimov , I. I. Buchinskaya I. I. Buchinskaya
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521070120
Abstract / Full Text

The dependence of the ionic conductivity σdc(y) of crystallization products on the concentration is studied by impedance spectroscopy in quasi-binary systems RF3−PbF2 (R = Pr, Nd) in the region of compositions R1 − yPbyF3 – y (0 ≤ y ≤ 0.22) enriched with the rare-earth component RF3. The single-phase tysonite (space group \(P\bar {3}c1\)) solid solutions R1 − yPbyF3 – y are synthesized from the melt by directional crystallization for y < 0.1. The maximum conductivity σdc at 296 ± 1 К is found to be 7 × 10−5 and 3 × 10−5 S/cm for crystals with the composition Pr0.96Pb0.04F2.96 and Nd0.95Pb0.05F2.95, respectively. For 9−10 mol % PbF2, the samples become two-phase, the second phase—the fluorite solid solution Pb1 − xRxF2 + x—appears, and their ionic conductivity decreases.

Author information
  • Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallograpy and Photonics,” Russian Academy of Sciences, Moscow, Russia

    N. I. Sorokin, D. N. Karimov & I. I. Buchinskaya

References
  1. Sobolev, B.P., The Rare Earth Trifluorides, Barcelona: Institut d’Estudis Catalans, 2000−2001.
  2. Mahammad, I., Witter, R., Fichtner, M., and Anji Reddy, M., Introducing interlayer electrolytes: toward room temperature high potential solid state rechargeable fluoride ion batteries, Appl. Energy Mater., 2019, vol. 2, p. 1553.
  3. Motohashi, K., Nakamura, T., Kimura, Y., Uchimoto, Y., and Amezawa, K., Influence of microstructures on conductivity in tysonite-type fluoride ion conductors, Solid State Ionics, 2019, vol. 338, p. 113.
  4. Liu, L., Yang, L., Liu, M., Wang, X., Li, X., Shao, D., Luo, K., Luo, Z., and Chen, G., A flexible tysonite-type La0.95Ba0.05F2.95@PEO-based composite electrolyte for the application of advanced fluoride ion battery, J. Energy Storage, 2019, vol. 25, p. 100886.
  5. Sobolev, B.P., Sorokin, N.I., and Bolotina, N.B. Nonstoichiometric single crystals M1 – xRxF2 + x and R1 ‒ yMyF3 – y (M – Ca, Sr, Ba; R – rare earth elements) as fluorine-conducting solid electrolytes, in Photonic & Electronic Properties of Fluoride Materials, Tressaud, A. and Poeppelmeier, K., Eds, Amsterdam: Elsevier., 2016, p. 465.
  6. Sorokin, N.I., Sobolev, B.P., Krivandina, E.A., and Zhmurova, Z.I., Optimization for single crystals of solid electrolytes with tysonite-type structure (LaF3) for conductivity at 293 K: 2. Nonstoichiometric phases R 1 – y M yF3 – y (R = La – Lu, Y; M = Sr, Ba), Crystallogr. Rep., 2015, vol. 60, no. 1, p. 123.
  7. Sobolev, B.P., Sorokin, N.I., Krivandina, E.A., and Zhmurova, Z.I., 293-K conductivity optimization for single crystals of solid electrolytes with tysonite structure (LaF3): I. Nonstoichiometric phases R 1 – yCayF3 – y (R = La – Lu, Y), Crystallogr. Rep., 2014, vol. 59, no. 4, p. 550.
  8. Takahashi, T., Iwahara, H., and Ishikawa, T., Ionic conductivity of doped cerium trifluoride, J. Electrochem. Soc., 1977, vol. 124, p. 280.
  9. Murin, I.V., Glumov, O.V., and Amelin, Yu.V., Ion transfer mechanism in LaF3, J. Appl. Chem. USSR, 1980, vol. 53, no. 7, p. 1132.
  10. Murin, I.V., Glumov, O.V., and Sobolev, B.P., Electrical conductivity of solid electrolytes based on CeF3, Vestnik LGU, 1980, no. 10, p. 84.
  11. Roos, A., van de Pol, F.C.M., Keim, R., and Schoonman, J., Ionic conductivity in tysonite-type solid solutions La1 − xBaxF3 − x , Solid State Ionics, 1984, vol. 13, p. 191.
  12. Geiger, H., Schon, G., and Strok, H., Ionic conductivity of single crystals of the non-stoichiometric tysonite phase La1 − xSrxF3 − x (0 ≤ x ≤ 0.14), Solid State Ionics, 1985, vol. 15, p. 155.
  13. Trnovcova, V., Fedorov, P.P., and Furar, I., Fluoride solid electrolytes, Russ. J. Electrochem., 2009, vol. 45, p. 630.
  14. Vergent’ev, T.Yu., Banshchikov, A.G., Koroleva, E.Yu., Sokolov, N.S., Zakharkin, M.V., and Okuneva, N.M., In-plane conductivity of thin films and heterostructures based on LaF3−SrF2, J. St. Petersburg State Polytechnical University: Phys.-Math., 2013, vol. 4-2, no. 182, p. 76.
  15. Buchinskaya, I.I. and Fedorov, P.P., Lead difluoride and related systems, Russ. Chem. Reviews, 2004, vol. 2004, no. 4, p. 371.
  16. Krivandina, E.A., Zhmurova, Z.I., Berezhkova, G.N., Sobolev, B.P., Glushkova, T.M., Kiselev, D.F., Firsova, M.M., and Shtyrkova, A.R., Growth, density, mechanical properties of La1 − xSrxF3 − x (0 ≤ x ≤ 0.15) solid solutions with tysonite structure, Crystallogr. Rep., 1995, vol. 40, no. 4, p. 686.
  17. Fedorov, P.P., High-temperature chemistry of the condensed state of systems with trifluorides of rare-earth elements as a basis for obtaining new materials, Doctoral (Chem.) Dissertation, Moscow: MITKhT, 1991.
  18. Buchinskaya, I.I., Arkharova, N.A., Ivanova, A.G., and Karimov, D.N., Growth of crystals of solid solutions with tysonite structure in the PbF2–RF3 systems (R = Pr, Nd), Crystallogr. Rep., 2020, vol. 65, no. 1, p. 147.
  19. Karimov, D.N., Kireev, V.V., Dymshitz, Yu.M., Buchinskaya, I.I., Sobolev, B.P., and Bogdashich, O.V., Crucible for growing crystals of high volatile materials, RF Patent No. 153101, 2014.
  20. Karimov, D.N., Buchinskaya, I.I., and Dymshitz, Yu.M., RF Patent No. 2742638, 2020.
  21. Ivanov-Schitz, A.K., Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Conductivity of solid solutions Sr1 ‒ xLaxF2 + x (0.03 ≤ x ≤ 0.40), Sov. Solid State Phys., 1983, vol. 25, no. 6, p. 1007.
  22. Sorokin, N.I. and Sobolev, B.P., Anionic high-temperature conduction in single crystals of nonstoichiometric phases R 1 – y M yF3 – y (R = La – Lu; M = Ca, Sr, Ba) with the tysonite (LaF3) structure, Russ. J. Electrochem., 2007, vol. 43, p. 398.]
  23. Matsulev, A.N., Buznik, V.M., Livshitz, A.I., Fedorov, P.P., and Sobolev, B.P., NMR studies of the structure and ion transport in diamagnetic solid electrolytes M1 − xRxF2 + x , Sov. Solid State Phys., 1988, vol. 30, no. 12, p. 2043.
  24. Privalov, A.F. and Murin, I.V., Ion-motion disorder in a tysonite superionic conductor from 19F NMR data, Phys. Solid State, 1999, vol. 41, no. 9, p. 1482.
  25. Fujara, F., Kruk, D., Lips, O., Privalov, A.F., Sinitsyn, V., and Stork, H., Fluorine dynamics in LaF3-type fast ionic conductors—Combined results of NMR and conductivity techniques, Solid State Ionics, 2008, vol. 179, p. 2350.
  26. Khrykina, O.N., Sorokin, N.I., Verin, I.A., Bolotina, N.B., and Sobolev, B.P., Defect structure and ionic conductivity of as-grown R 1 – ySryF3 – y (R = Ce, Pr, Nd) crystals with high SrF2 content, Crystallogr. Rep., 2017, vol. 62, no. 4, p. 545.
  27. Bolotina, N.B., Chernaya, T.S., Kalyukanov, A.I., Verin, I.A., Sorokin, N.I., Fykin, L.E., Isakova, N.N., and Sobolev, B.P., Relationship between the defect structure and fluorine-ion conductivity of La1 – ySryF3 – y (0 ≤ y ≤ 0.15) crystals according to X-ray and neutron diffraction data, Crystallogr. Rep., 2015, vol. 60, no. 3, p. 346.
  28. Bolotina, N.B., Kalyukanov, A.I., Chernaya, T.S., Verin, I.A., Buchinskaya, I.I., Sorokin, N.I., and Sobolev, B.P., X-ray and neutron diffraction study of the defect crystal structure of the as-grown nonstoichiometric phase Y0.715Ca0.285F2.715, Crystallogr. Rep., 2013, vol. 58, no. 4, p. 575.
  29. Murin, I.V., Superionic conductors: abnormally high ionic conductivity in inorganic fluorides, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1984, no. 2(1), p. 53.