Structure and Transport Characteristics of Single-Crystal and Ceramic ZrO2–Y2O3 Solid Electrolytes

E. E. Lomonova E. E. Lomonova , D. A. Agarkov D. A. Agarkov , M. A. Borik M. A. Borik , G. M. Korableva G. M. Korableva , A. V. Kulebyakin A. V. Kulebyakin , I. E. Kuritsyna I. E. Kuritsyna , M. N. Mayakova M. N. Mayakova , F. O. Milovich F. O. Milovich , V. A. Myzina V. A. Myzina , N. Yu. Tabachkova N. Yu. Tabachkova , E. I. Chernov E. I. Chernov
Russian Journal of Electrochemistry
Abstract / Full Text

Directionally solidified single crystals of (ZrO2)1 – x(Y2O3)x solid solutions (x = 0.08–0.12) are grown. The effect of the concentration of the stabilizing yttrium oxide on the transport characteristics of the ZrO2-based single-crystal solid solutions is studied. In the studied composition range, it is the (ZrO2)0.91(Y2O3)0.09 crystal that has the maximal electrical conductivity. This crystal was milled, the resulting powder was used as a starting material for the manufacturing of ceramic samples by slip casting onto a moving substrate. The grains of the ceramic samples are sized 10–30 μm; the material density is 5.86 g/cm2. A comparative analysis of the structure and electrophysical properties of ceramic and single-crystal samples of the (ZrO2)0.91(Y2O3)0.09 solid electrolytes is carried out. The described method of the ceramic sample preparation is shown not leading to changes in their phase composition and crystal structure. The ionic conductivity of the single crystals and ceramics in the 973–1173 K temperature range were close to each other; at a temperature of 1173 K, their conductivity values are 0.076 and 0.065 S/cm, respectively.

Author information
  • Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia

    E. E. Lomonova, M. A. Borik, A. V. Kulebyakin, M. N. Mayakova, F. O. Milovich, V. A. Myzina & N. Yu. Tabachkova

  • Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

    D. A. Agarkov, G. M. Korableva & I. E. Kuritsyna

  • Moscow Physicotechnical Institute, Dolgoprudnyi, Moscow oblast, Russia

    D. A. Agarkov

  • National Research Technological University MISiS, Moscow, Russia

    F. O. Milovich & N. Yu. Tabachkova

  • Research and Production Enterprise EKON, Obninsk, Kaluzhskaya oblast, Russia

    E. I. Chernov

  1. Goodenough, J.B., Oxide-ion electrolytes, Annu. Rev. Mater. Res., 2003, vol. 33, p. 91.
  2. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: A brief review, Solid State Ionics, 2004, vol. 174, p. 135.
  3. Kilner, J.A. and Steele, B.C.H., Nonstoichiometric Oxides, New York.: Academic, 1981. p. 233.
  4. Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta, 2000, vol. 45, nos. 15–16, p. 2423.
  5. Wachsman, E.D. and Lee, K.T., Lowering the temperature of solid oxide fuel cells, Science, 2011, vol. 334, p. 935.
  6. Han, F., Mücke, R., Gestel, T.V., Leonide, A., Menzler, N.H., Buchkremer, H.P., and Stöver, D., Novel high-performance solid oxide fuel cells with bulk ionic conductance dominated thin-film electrolytes, J. Power Sources, 2012, vol. 218, p. 157.
  7. Omar, S., Belda, A., Escardino, A., and Bonanos, N., Ionic conductivity ageing investigation of 1Ce10ScSZ in different partial pressures of oxygen, Solid State Ionics, 2010, vol. 184, p. 2.
  8. Jasper, A., Kilner, J.A., and McComb, D.W., TEM and impedance spectroscopy of doped ceria electrolytes, Solid State Ionics, 2008, vol. 179, nos. 21–26, p. 904.
  9. Jais, A.A., Ali, S.A.M., Anwar, M., Somalu, M.R., Muchtar, A., Isahak, W.N.R.W., Tan, C.Y., Singh, R., and Brandon, N.P., Enhanced ionic conductivity of scandia-ceria-stabilized-zirconia (10Sc1CeSZ) electrolyte synthesized by the microwave-assisted glycine nitrate process, Ceram. International, 2017, vol. 43, no. 11, p. 8119.
  10. Zhang, J., Lenser, C., Menzler, N.H., and Guillon, O., Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500°C, Solid State Ionics, 2020, vol. 344, p. 115138.
  11. Yeh, T.-H., Hsu, W.-C., and Chou, C.-C., Mechanical and electrical properties of ZrO2 (3Y) doped with RENbO4 (RE = Yb, Er, Y, Dy, YNd, Sm, Nd), J. Phys. IV France, 2005, vol. 128, p. 213.
  12. Kumar, A., Jaiswa, A., Sanbui, M., and Omar, S., Oxygen-ion conduction in scandia-stabilized zirconia-ceria solid electrolyte (xSc2O3–1CeO2–(99 – x)ZrO2, 5 ≤ x ≤ 11), J. Amer. Ceram. Soc., 2016, vol. 100, p. 659.
  13. Lee, D.-S., Kim, W.S., Choi, S.H., Kim, J., Lee, H.-W., and Lee, J.-H., Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs, Solid State Ionics, 2005, vol. 176, nos. 1–2, p. 33.
  14. Chen, X.J., Khor, K.A., Chan, S.H., and Yu, L.G., Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng.: A, 2002, vol. 335, nos. 1–2, p. 246.
  15. Abbas, H.A., Argirusis, C., Kilo, M., Wiemhöfer, H.-D., Hammad, F.F., and Hanafi, Z.M., Preparation and conductivity of ternary scandia-stabilised zirconia, Solid State Ionics, 2011, vol. 184, no. 1, p. 6.
  16. Tien, T.Y., Grain boundary conductivity of Zr0.84Ca0.16O1.84 ceramics, J. Appl. Phys., 1964, vol. 35, p. 122.
  17. Osiko, V.V., Borik, M.A., and Lomonova, E.E., Handbook of Crystal Growth, Berlin: Springer, 2010, p. 433–469.
  18. Spirin, A., Ivanov, V., Nikonov, A., Lipilin, A., Paranin, S., Khrustov, V., and Spirina, A., Scandia-stabilized zirconia doped with yttria: synthesis, properties, and ageing behavior, Solid State Ionics, 2012, vol. 225, p. 448.
  19. Omar, S., Najib, W.B., Chen, W., and Bonanos, N., Electrical conductivity of 10 mol % Sc2O3–1 mol % M2O3–ZrO2 ceramics, J. Amer. Ceram. Soc., 2012, vol. 95, no. 6, p. 1965.
  20. Rocha, R.A., Muccillo, E.N.S., Dessemonda, L., and Djurado, E., Thermal ageing of nanostructured tetragonal zirconia ceramics: characterization of interfaces, J. Europ. Ceram. Soc., 2010, vol. 30, p. 227.
  21. Araki, W., Koshikawa, T., Yamaji, A., and Adachi, T., Degradation mechanism of scandia-stabilised zirconia electrolytes: discussion based on annealing effects on mechanical strength, ionic conductivity, and Raman spectrum, Solid State Ionics, 2009, vol. 180, nos. 28–31, p. 1484.
  22. Hirano, M., Watanabe, S., Kato, E., Mizutani, Y., Kawai, M., and Nakamura, Y., High electrical conductivity and high fracture strength of Sc2O3-doped zirconia ceramics with submicrometer grains, J. Amer. Ceram. Soc., 1999, vol. 82, no. 10, p. 2861.
  23. Irvine, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by impedance spectroscopy, Adv. Mater., 1990, vol. 2, no. 3, p. 132.
  24. Hui, S.R., Roller, J., Yick, S., Zhang, X., Decés-Petit, C., Xie, Y., Maric, R., and Ghosh, D., A brief review of the ionic conductivity enhancement for selected oxide electrolytes, J. Power Sources, 2007, vol. 172, no. 2, p. 493.
  25. Kilo, M., Taylor, M.A., Argirusis, C., Borchardt, G., Lesage, B., Weber, S., Scherrer, S., Scherrer, H., Schroeder, M., and Martin, M., Cation self-diffusion of 44Ca, 88Y and 96Zr in single crystalline calcia- and yttria-doped zirconia, J. Appl. Phys., 2003, vol. 94, no. 12, p. 7547.
  26. Chevalier, J., Gremillard, L., Virkar, A.V., and Clarke, D.R., The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Amer. Ceram. Soc., 2009, vol. 92, no. 9, p. 1901.
  27. Aktas, B., Tekeli, S., and Kucuktuvek, M., Electrical conductivity of Er2O3-doped c-ZrO2 ceramics, J. Mater. Eng. Perform., 2014, vol. 23, no. 1, p. 349.
  28. Cheikh, A., Madani, A., Touati, A., Boussetta, H., and Monty, C., Ionic conductivity of zirconia based ceramics from single crystals to nanostructured polycrystals, J. Europ. Ceram. Soc., 2001, vol. 21, nos. 10–11, p. 1837.
  29. Aoki, M., Chiang, Y.-M., Kosacki, I., Lee, L.J.-R., Tuller, H., and Liu, Y., Solute segregation and grain-boundary impedance in high-purity stabilized zirconia, J. Amer. Ceram. Soc., 1996, vol. 79, no. 5, p. 1169.
  30. Shukla, S., Seal, S., Vij, R., and Bandyopadhyay, S., Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia, Nano Letters, 2003, vol. 3, no. 3, p. 397.
  31. Mondal, P., Klein, A., Jaegermann, W., and Hahn, H., Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia, Solid State Ionics, 1999, vol. 118, nos. 3–4, p. 331.
  32. Choen, K.-W., Chen, J., and Xu, R., Metal–organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications, Thin Solid Films, 1997, vol. 304, no. 1–2, p. 106.
  33. Liaw, B.Y. and Weppner, W., Low temperature limiting-current oxygen sensors based on tetragonal zirconia polycrystals, J. Electrochem. Soc., 1991, vol. 138, no. 8, p. 2478.
  34. Brett, D.J.L., Atkinson, A., Brandon, N.P., and Skinner, S.J., Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev., 2008, vol. 37, p. 1568.
  35. Badwal, S.P.S. and Drennan, J., The effect of thermal history on the grain boundary resistivity of Y-TZP materials, Solid State Ionics, 1988, vol. 28–30, p. 1451.
  36. Ye, F., Mori, T., Ou, D.R., Takahashi, M., Zou, J., and Drennan, J., Ionic conductivities and microstructures of ytterbium-doped ceria, J. Electrochem. Soc., 20007, vol. 154, no. 2, p. B180.
  37. Gerhardt, R. and Nowick, A.S., Grain boundary effect in ceria doped with trivalent cations: I, Electrical measurements, J. Amer. Ceram. Soc., 1986, vol. 69, no. 9, p. 641.
  38. Wang, D.Y. and Nowick, A.S., The “grain-boundary effect” in doped ceria solid electrolytes, J. Solid State Chem., 1980, vol. 35, no. 3, p. 325.
  39. Guo, X. and Waser, R., Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria, Prog. Mater. Sci., 2006, vol. 51, p. 151.
  40. Guo, X. and Maier, J., Grain boundary blocking effect in zirconia: a Schottky barrier analysis, J. Electrochem. Soc., 2001, vol. 148, no. 3, p. E121.
  41. Tuller, H.L., Ionic conduction in nanocrystalline materials, Solid State Ionics, 2000, vol. 131, nos. 1–2, p. 143.
  42. Heitjans, P. and Indris, S., Diffusion and ionic conduction in nanocrystalline ceramics, J. Phys: Condens. Matter, 2013, vol. 15, no. 30, p. R1257.
  43. Badwal, S.P.S., Grain boundary resistivity in zirconia-based materials: effect of sintering temperatures and impurities, Solid State Ionics, 1995, vol. 76, nos. 1–2, p. 67.
  44. Mondal, P. and Hahn, H., Investigation of the complex conductivity of nanocrystalline Y2O3-stabilized zirconia, Ber. Bunsenges. Phys. Chem., 1997, vol. 101, no. 11, p. 1765.
  45. Lee, J.-H., Mori, T., Li, J.-G., Ikegami, T., Komatsu, M., and Haneda, H., Improvement of grain-boundary conductivity of 8 mol % yttria-stabilized zirconia by precursor scavenging of siliceous phase, J. Electrochem. Soc., 2000, vol. 147, no. 7, p. 2822.
  46. Maier, J., Space charge regions in solid two phase systems and their conduction contribution – II contact equilibrium at the interface of two ionic conductors and the related conductivity effect, Ber. Bunsenges. Phys. Chem., 1985, vol. 89, no. 4, p. 355.
  47. Guo, X., Sigle, W., Fleig, J., and Maier, J., Role of space charge in the grain boundary blocking effect in doped zirconia, Solid State Ionics, 2002, vol. 154–155, p. 555.
  48. Liu, T., Zhang, X., Wang, X., Yu, J., and Li, L., A review of zirconia-based solid electrolytes, Ionics, 2016, vol. 22, p. 2249.
  49. Röwer, R., Knöner, G., Reimann, K., Schaefer, H.-E., and Södervall, U., Oxygen diffusion in YSZ single crystals at relatively low temperatures, Phys. Stat. Sol. B, 2003, vol. 239, no. 2, p. R1.
  50. Badwal, S.P.S. and Rajendran, S., Effect of micro- and nano-structures on the properties of ionic coductors, Solid State Ionics, 1994, vol. 70–71, p. 83.
  51. Lomonova, E.E. and Osiko, V.V., Growth of Zirconia Crystal by Skull-Mellting Technique, in Crystal Growth Technology, Scheel, H.J. and Fukuda, T., eds., New York: Wiley, 2003, p. 461–486.
  52. Kuz’minov, Yu.S., Lomonova, E.E., and Osiko, V.V., Cubic Zirconia and Skull Melting, Cambridge: Cambr. Internat. Sci. Publ., 2009.
  53. Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H., and Yoshimura, M., Oxygen-induced structural change of the tetragonal phase around the tetragonal-cubic phase boundary in ZrO2–YO1.5 solid solutions, Acta Crystallogr. B Struct. Sci., 1994, vol. B50, p. 663.
  54. Yashima, M., Ohtake, K., Kakihana, M., Arashi, H., and Yoshimura, M., Determination of tetragonal-cubic phase boundary of Zr1 – xRxO2 – x/2 (R = Nd, Sm, Y, Er and Yb) by Raman scattering, J. Phys. Chem. Solids, 1996, vol. 57, no. 1, p. 17.
  55. Hemberger, Y., Wichtner, N., Berthold, C., and Nickel, K.G., Quantification of yttria in stabilized zirconia by Raman spectroscopy, Int. J. Appl. Ceram. Technol., 2016, vol. 13, no. 1, p. 116.
  56. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, P.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., and Tabachkova, N.Y., Structure and conductivity of yttria and scandia-doped zirconia crystals grown by skull melting, J. Amer. Ceram. Soc., 2017, vol. 100, no. 12, p. 5536.
  57. Agarkov, D.A., Borik, M.A., Bredikhin, S.I., Burmistrov, I.N., Eliseeva, G.M., Kolotygin, V.A., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Ryabochkina, P.A., Taba-chkova, N.Yu., and Volkova, T.V., Structure and transport properties of zirconia crystals co-doped by scandia, ceria and yttria, J. Materiomics, 2019, vol. 5, no. 2, p. 273.
  58. Guo, X., Roles of alumina in zirconia for functional applications, J. Amer. Ceram. Soc., 2003, vol. 86, no. 11, p. 1867.
  59. Miyayama, M., Yanagida, H., and Asada, A., Effects of Al2O3 additions on resistivity and microstructure of yttria-stabilized zirconia, J. Amer. Ceram. Soc. Bull., 1986, vol. 65, no. 4, p. 74.
  60. Navarro, L.M., Recio, P., Jurado, J.R., and Duran, P., Preparation and properties evaluation of zirconia-based/Al2O3 composites as electrolytes for solid oxide fuel cell systems, Part III, Mechanical and electrical characterization, J. Mater. Sci., 1995, vol. 30, p. 1949.
  61. Feighery, J. and Irvine, J.T.S., Effect of alumina additions upon electrical properties of 8 mol % yttria-stabilized zirconia, Solid State Ionics, 1999, vol. 121, p. 209.
  62. Ross, I.M., Rainforth, W.M., McComb, D.W., Scott, A.J., and Brydson, R., The role of trace additions of alumina to yttria–tetragonal zirconia polycrystals (Y-TZP), Scr. Mater., 2001, vol. 45, no. 6, p. 653.