Conductivity and Mechanical Properties of Lithium-Conducting Ceramic Solid Electrolytes with the NASICON Structure

G. B. Kunshina G. B. Kunshina , O. B. Shcherbina O. B. Shcherbina , I. V. Bocharova I. V. Bocharova
Russian Journal of Electrochemistry
Abstract / Full Text

The electrochemical and mechanical characteristics of ceramic solid electrolytes Li1 + xAlxTi(Ge)2 – x(PO4)3 with the high Li-ionic conductivity and the NASICON crystal structure are considered. The ionic conductivity of solid electrolytes is studied by the method of electrochemical impedance spectroscopy in the frequency interval from 10 to 2 × 106 Hz. The transfer numbers of Li+ ions and the electronic conductivity are determined by potentiostatic chronoamperometry. The elastic and mechanical properties of ceramics are studied by the contact method by means of a probe microscope-nanohardness tester Nanoskan. The microhardness data obtained by comparable sclerometry and Young’s modulus determined based on cantilever approach curves are shown. The critical stress intensity factor for stresses of the first kind KIC is determined for ceramic solid electrolytes Li1 + xAlxTi(Ge)2 – x(PO4)3.

Author information
  • Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences, Apatity, Russia

    G. B. Kunshina, O. B. Shcherbina & I. V. Bocharova

  1. Xu, R.C., Xia, X.H., Zhang, S.Z., Xie, D., Wang, X.L., and Tu, J.P., Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta, 2018, vol. 284, p. 177.
  2. Wolfenstine, J., Allen, J.L., Sakamoto, J., Siegel, D.J., and Choe, H., Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review, Ionics, 2018, vol. 24, p. 1271.
  3. Yu, X. and Manthiram, A., Electrochemical energy storage with mediator-ion solid electrolytes, Joule, 2017, vol. 1, no. 3, p. 453.
  4. Manthiram, A., Yu, X., and Wang, S., Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mat., 2017, vol. 2, p. 16103.
  5. Deiner, L.J., Bezerra, C.A.G., Howell, T.G., and Powell A.S., Digital printing of solid-state lithium-ion batteries, Adv. Eng. Mater., 2019, vol. 21, p. 1900737.
  6. Goodenough, J.B. and Singh, P., Review – Solid electrolytes in rechargeable electrochemical cells, J. Electrochem. Soc., 2015, vol. 162, p. A2387.
  7. Zheng, F., Kotobuki, M., Song, S., Lai, M.O., and Lu, L., Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 2018, vol. 389, p. 198.
  8. Hou, M., Liang, F., Chen, K., Dai, Y., and Xue, D., Challenges and perspectives of NASICON-type solid electrolytes for all solid-state lithium batteries, Nanotechnology, 2020, vol. 31, p. 132003.
  9. Kunshina, G.B., Efremov, V.V., and Lokshin, E.P., Microstructure and ionic conductivity of lithium–aluminum titanophosphate, Russ. J. Electrochem., 2013, vol. 49, p. 725.
  10. Kunshina, G.B., Bocharova, I.V., and Ivanenko, V.I., Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity, Inorg. Mater. Appl. Res., 2017, vol. 8, no. 2, p. 238.
  11. Fu, J., Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5, Solid State Ionics, 1997, vol. 104, p. 191.
  12. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka N., and Adachi, G., Ionic conductivity of solid electrolytes based on lithium titanium phosphate, J. Electrochem. Soc., 1990, vol. 137, no. 4, p. 1023.
  13. Kotobuki, M., Lei, H., Chen, Y., Song, S., Xu, C., Hu, N., Molenda, J., and Lu, L., Preparation of thin solid electrolyte by hot-pressing and diamond wire slicing, RSC Adv., 2019, vol. 9, p. 11670.
  14. Huang, Y., Jiang, Y., Zhou, Y., Hu, Z., and Zhu, X., Influence of liquid solutions on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes, ChemElectroChem., 2019, vol. 6, p. 6016.
  15. He, S. and Xu, Y., Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1 + xAlxTi2 – x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content, Solid State Ionics, 2019, vol. 343, p. 115078.
  16. Mariappan, C.R., Yada, C., Rosciano, F., and Roling, B., Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics, J. Power Sources, 2011, vol. 196, p. 6456.
  17. Cretin, M. and Fabry, P., Comparative study of lithium ion conductors in the system \({\text{L}}{{{\text{i}}}_{{{\text{1}} + x}}}{\text{A}}{{{\text{l}}}_{x}}{\text{A}}_{{{\text{2}} - x}}^{{{\text{IV}}}}{{\left( {{\text{P}}{{{\text{O}}}_{{\text{4}}}}} \right)}_{{\text{3}}}}\) with AIV = Ti or Ge and 0 ≤ x ≤ 0.7 for use as Li+ sensitive membranes, J. Eur. Ceram. Soc., 1999, vol. 19, p. 2931.
  18. Lu, X., Wang, R., Zhang, F., and Li, J., The influence of phosphorous source on the properties of NASICON lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)3, Solid State Ionics, 2020, vol. 354, p. 115417.
  19. Yan, B. Zhu, Y., Pan, F., Liu, J., and Lu, L., Li1.5Al0.5Ge1.5(PO4)3 Li-ion conductor prepared by melt-quench and low temperature pressing, Solid State Ionics, 2015, vol. 278, p. 65.
  20. Perez-Estebanez, M., Isasi-Marín, J., Rivera-Calzada, Leon, A.C., and Nygren, M., Spark plasma versus conventional sintering in the electrical properties of Nasicon-type materials, J. Alloys Compd., 2015, vol. 651, p. 636.
  21. Kunshina, G.B., Efremov, V.V., and Belyaevsky, A.T., Ionic transport study of the solid electrolytes with NASICON structure by the impedance spectroscopy method, Trudy Kol’skogo Nauchnogo Tsentra Rossiiskoi Akademii Nauk, 2015, no. 31, p. 389.
  22. Xu, X., Wen, Z., Wu, X., Yang, X., and Gu, Z., Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3xLi2O (x = 0.0–0.20) with good electrical and electrochemical properties, J. Am. Ceram. Soc. 2007, vol. 90, no.9, p. 2802.
  23. Sun, Z., Liu, L., Lu, Y., Shi, G., Li, J., Ma, L., Zhao, J., and An, H., Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor, J. Eur. Ceram. Soc. 2019, vol. 39, issues 2–3, p. 402.
  24. Kobi, S. and Mukhopadhyay, A., Structural (in)stability and spontaneous cracking of Li–La-zirconate cubic garnet upon exposure to ambient atmosphere, J. Eur. Ceram. Soc., 2018, vol. 38, p. 4707.
  25. Kunshina, G.B., Ivanenko, V.I., and Bocharova, I.V., Synthesis and study of conductivity of Al-substituted Li7La3Zr2O12, Russ. J. Electrochem., 2019, vol. 55, p. 558.
  26. Han, F., Westover, A.S., Yue, J., Fan, X., Wang, F., Chi, M., Leonard, D.N., Dudney, N.J., Wang, H., and Wang, C., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy, 2019, vol. 4, p. 187.
  27. Oliver, W.C. and Pharr, G.M., Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 2004, vol. 19, iss. 1, p. 3.
  28. Maslenikov, I.I., Reshetov, V.N., and Useinov, A.S., Mapping the elastic modulus of a surface with a NanoScan 3D scanning microscope, Instrum. Exp. Tech., 2015, vol. 58, p. 711.
  29. Chantikul, P., Anstis, G.R., Lawn B.R., and Marshall, D.B., A Critical evaluation of indentation techniques for measuring fracture toughness: II, Strength method, J. Am. Ceram. Soc., 1981, vol. 64, no. 9, p. 539.
  30. Jackman, S.D. and Cutler, R.A., Effect of microcracking on ionic conductivity in LATP, J. Power Sources, 2012, vol. 218, p. 65.
  31. Yan, G., Yu, S., Nonemacher, J.F., Tempel, H., Kungl, H., Malzbender, J., Eichel, R.-A., and Kruger, M., Influence of sintering temperature on conductivity and mechanical behavior of the solid electrolyte LATP, Ceram. Int., 2019, vol. 45, no. 12, p. 14697.