Mediated Electrosynthesis and Catalytic Activity of Nanocomposites Formed by Metal Nanoparticles with Poly(N-vinylpyrrolidone) and Nanocellulose

V. V. Yanilkin V. V. Yanilkin , R. R. Fazleeva R. R. Fazleeva , G. R. Nasretdinova G. R. Nasretdinova , Yu. N. Osin Yu. N. Osin , N. A. Zhukova N. A. Zhukova , A. I. Samigullina A. I. Samigullina , A. T. Gubaidullin A. T. Gubaidullin , V. A. Mamedov V. A. Mamedov
Russian Journal of Electrochemistry
Abstract / Full Text

Nanoparticles (NP) of Au, Ir, Pd, Pt, and Rh are synthesized by benzimidazo[1',2':1,2]quinolino-[4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline (BIQOQ)-mediated electrochemical reduction of AuCl, K3[IrCl6], PdCl2, PtCl2, RhCl3, respectively, in the presence of poly(N-vinylpyrrolidone) (PVP) and nanocellulose (NC) at the potential controlled in the region of generation of BIQOQ. anion radicals in the DMF/0.1 M Bu4NBF4 medium at room temperature. The efficiency of electrosynthesis is shown to be determined by the nature of the substrate to be reduced. K3[IrCl6] is virtually unreducible, whereas the other substrates are reduced to form NP–M. As the theoretical charge is passed, the generated metal is formed in the solution volume rather than as the cathodic deposit. NP–Au particles are formed in the quantitative amount, the mediator is retained in the process. In the other cases, the process consumes from ~50 (Ir, Pd, Pt) to 80% (Rh) of the mediator with the corresponding decrease in the NP–M yield. The synthesis produces individual spherical NP–Pd (4 ± 1 nm) and agglomerates of nanoparticles of gold (78 ± 27 nm), platinum (34 ± 14 nm), and rhodium (33 ± 20 nm) all stabilized in PVP shells. In contrast to the earlier described Ag@PVP nanoparticles which decorated NC in the extremely dense way, these particles are bound only partly with NC. The nanocomposites of Pd, Pt, and Au exhibit catalytic activity in the reactions of reduction of nitroaromatic compounds by sodium borohydride in aqueous media.

Author information
  • Arbuzov Institute of Organic and Physical Chemistry, Kazan Research Center, Russian Academy of Sciences, 420088, Kazan, Russia

    V. V. Yanilkin, R. R. Fazleeva, G. R. Nasretdinova, N. A. Zhukova, A. I. Samigullina, A. T. Gubaidullin & V. A. Mamedov

  • Kazan (Volga Region) Federal University, Interdisciplinary Center “Analytical Microscopy”, 420018, Kazan, Russia

    Yu. N. Osin

  1. Nanoparticles and Catalysis, Astruc, D., Ed., Wiley-VCH, 2008.
  2. Beller, M. and Bolm, C., Transition Metals for Organic Synthesis, Wiley-VCH, 2008.
  3. Lara, P. and Philippot, K., The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview, Catal. Sci. Technol., 2014, vol. 4, p. 2445.
  4. De Meijere, A. and Diederich, F., Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, 2008.
  5. Meyer, T.H., Finger, L.H., Gandeepan, P., and Ackermann, L., Resource economy by metallaelectrocatalysis: merging electrochemistry and C–H activation, Trends Chem., 2019, vol. 1, p. 63.
  6. Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dilman, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., et al., Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision, Russ. Chem. Rev., 2014, vol. 83, p. 885.
  7. Yanilkin, V.V., Nasretdinova, G.R., and Kokorekin, V.A., Mediated electrochemical synthesis of metal nanoparticles, Russ. Chem. Rev., 2018, vol. 87, p. 1080.
  8. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Gubaidullin, A.T., and Ziganshina, A.Yu., Two-step one-pot electrosynthesis and catalytic activity of the CoO–CoO∙xH2O supported silver nanoparticles, J. Solid State Electrochem., 2020, vol. 24, p. 829.
  9. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu. N., Zhukova, N.A., and Mamedov, V.A., Benzimidazo[1',2':1,2]quinolino [4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline—New mediator for electrosynthesizing metal nanoparticles, Russ. J. Electrochem., 2020, vol. 56, p. 646.
  10. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Y.N., Evtugyn, V.G., Ziganshina, A.Y., and Gubaidullin, A.T., Structure and catalytic activity of ultrasmall Rh, Pd and (Rh + Pd) nanoparticles obtained by mediated electrosynthesis, New J. Chem., 2019, vol. 43, p. 3931.
  11. Nasretdinova, G.R., Fazleeva, R.R., Osin, Yu.N., Evtugin, V.G., Gubaidullin, A.T., Ziganshina, A.Yu., and Yanilkin, V.V., Methylviologen mediated electrochemical eynthesis of catalytically active ultrasmall Pd–Ag bimetallic nanoparticles stabilized by CTAC, Electrochim. Acta, 2018, vol. 285, p. 149.
  12. Suh, M.P., Metal-organic frameworks and porous coordination polymers: properties and applications, Bull. Jpn. Soc. Coord. Chem., 2015, vol. 65, p. 9.
  13. Caia, X., Denga, X., Xiea, Z., Shia, Y., Panga, M., and Lina, J., Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core–shell nanohybrids for cancer therapy, Chem. Eng. J., 2018, vol. 358, p. 369.
  14. Gao, X.W., Yang, J., Song, K., Luo, W.B., Dou, S.X., and Kang, Y.M., Robust FeCo nanoparticles embedded in a Ndoped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media, J. Mater. Chem. A, 2018, vol. 46, no. 6, p. 23445.
  15. Sun, Q., Zhai, W., Hou, G., Feng, J., Zhang, L., Si, P., Guo, S., and Ci, L., In situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes, ACS Sustainable Chem. Eng., 2018, vol. 11, no. 6, p. 15219.
  16. Zhang, S., Wu, Q., Tang, L., Hu, Y., Wang, M.,  Zhao, J., Li, M., Han, J., Liu, X., and Wang, H., Individual high-quality N-doped carbon nanotubes mmbedded with nonprecious metal nanoparticles toward electrochemical reaction, ACS Appl. Mater. Interfaces, 2018, vol. 46, no. 10, p. 39757.
  17. Wu, Y., Qiu, X., Liang, F., Zhang, Q., Koo, A., Dai, Y., Lei, Y., and Sun, X., A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries, Appl. Catal. B, 2019, vol. 241, p. 407.
  18. Wu, T., Ma, J., Wang, X., Liu, Y., Xu, H., Gao, J., Wang, W., Liu, Y., and Yan, J., Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities, Nanotechnology, 2013, vol. 24, no. 12, p. 125301.
  19. Gan, T., Wang, Z., Shi, Z., Zheng, D., Sun, J., and Liu, Y., Graphene oxide reinforced core–shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications, Biosens. Bioelectron., 2018, vol. 112, p. 23.
  20. Wang, L., Wang, L., Zhang, J., Wang, H., and Xiao, F.-S., Enhancement of the activity and durability in CO oxidation over silica-supported Au nanoparticle catalyst via CeOx modification, Chin. J. Catal., 2018, vol. 39, p. 1608.
  21. Fedorenko, S., Jilkin, M., Nastapova, N., Yanilkin, V., Bochkova, O., Buriliov, V., Nizameev, I., Nasretdinova, G., Kadirov, M., Mustafina, A., and Budnikova, Y., Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions, Colloids Surf., A, 2015, vol. 486, p. 185.
  22. An, K. and Somorjai, G.A., Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies, Catal. Lett., 2015, vol. 145, p. 233.
  23. Eremenko, A., Smirnova, N., Gnatiuk, I., Linnik, O., Vityuk, N., Mukha, Y., and Korduban, A., Silver and gold nanoparticles on sol–gel TiO2, ZrO2, SiO2 surfaces: Optical spectra, photocatalytic activity, bactericide properties, in Nanocomposites and Polymers with Analytical Methods, Cuppoletti, J., Ed., Croatia: InTech, 2011, p. 404.
  24. Majhi, S.M., Naik, G.K., Lee, H.-J., Song, H.-G., Lee, C.-R., Lee, I.-H., and Yu, Y.-T., Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism, Sens. Actuators B, 2018, vol. 268, p. 223.
  25. Liu, J., Zou, S., Li, S., Liao, X., Hong, Y., Xiao, L., and Fan, J., A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol–gel process, J. Mater. Chem. A, 2013, vol. 1, p. 4038.
  26. Padbury, R.P., Halbur, J.C., Krommenhoek, P.J., Tracy, J.B., and Jur, J.S., Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates, Langmuir, 2015, vol. 31, no. 3, p. 1135.
  27. Kaushik, M. and Moores, A., Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, Green Chem., 2016, vol. 18, p. 622.
  28. Hassner, A. and Namboothiri, I., Organic Syntheses Based on Name Reactions. 3th Ed., Amsterdam: Elsevier, 2012.
  29. Mamedov, V.A., Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es, RSC Adv., 2016, vol. 6, p. 42132.
  30. Mamedov, V.A., Quinoxalines. Synthesis, Reactions, Mechanisms and Structure. Springer, 2016.
  31. Mamedov, V.A., Zhukova, N.A., Kadyrova, M.S., Fazleeva, R.R., Bazanova, O.B., Beschastnova, T.N., Gubaidullin A.T., Rizvanov, I.K., Yanilkin, V.V., Latypov, S.K., and Sinyashin, O.G., Environmentally friendly and efficient method for the synthesis of the new α,α'-diimine ligands with benzimidazole moiety, J. Heterocycl. Chem., 2020, vol. 57, p. 2466.
  32. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Mediated electrochemical synthesis of Pd0 nanoparticles in solution, Russ J. Electrochem., 2015, vol. 51, p. 951.
  33. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Yu.N., Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF, Electrochem. Commun., 2016, vol. 69, p. 36.
  34. Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R., Nasretdinova, G.R., Sultanova, E.D., Ziganshina, A.Yu., Gubaidullin, A.T., Samigullina, A.I., Evtyugin, V.G., Vorob’ev, V.V., and Osin, Yu.N., Molecular oxygen as mediator in the metal nanoparticles’ electrosynthesis in N,N-dimethylformamide, Russ. J. Electrochem., 2018, vol. 54, p. 265.
  35. Mann, C. and Barnes, K., Electrochemical Reactions in Nonaqueous Systems, New York: Marcel Dekker, 1970.
  36. Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Ziganshina, A.Yu., and Yanilkin, V.V., Two-step electrosynthesis and catalytic activity of CoO–CoO⋅ xH2O-supported Ag, Au, and Pd nanoparticles, Russ. Chem. Bull., 2020, vol. 69, p. 241.
  37. Rajender Reddy, K., Kumar, N.S., Surendra Reddy, P., Sreedhar, B., and Lakshmi Kantam, M., Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions, J. Mol. Catal. A: Chem., 2006, vol. 252, p. 12.
  38. Koga, H., Tokunaga, E., Hidaka, M., Umemura, Y., Saito, T., Isogai, A., and Kitaoka, T., Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers, Chem. Commun., 2010, vol. 46. p. 8567.
  39. Cirtiu, C.M., Dunlop-Brière, A.F., and Moores, A., Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions, Green Chem., 2011, vol. 13, no. 2, p. 288.
  40. Lam, E., Hrapovic, S., Majid, E., Chong, J.H., and Luong, J.H.T., Catalysis using gold nanoparticles decorated on nanocrystalline cellulose, Nanoscale, 2012, vol. 4, no. 3, p. 997.
  41. Tang, J., Shi. Z., Berry, R.M., and Tam, K.C., Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin, Ind. Eng. Chem. Res., 2015, vol. 54, p. 3299.
  42. Kaushik, M. and Moores, A., Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, Green Chem., 2016, vol. 18, p. 622.
  43. Chen, L., Cao, W., Quinlan, P.J., Berry, R.M., and Tam, K.C., Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals, ACS Sustain. Chem. Eng., 2015, vol. 3, p. 978.
  44. Tang, J., Sisler, J., Grishkewich, N., and Tam, K.C., Functionalization of cellulose nanocrystals for advanced applications, J. Colloid Interface Sci., 2017, vol. 494, p. 397.
  45. Eisa, W.H., Abdelgawad, A.M., and Rojas, O.J., Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic sctivity, ACS Sustain. Chem. Eng., 2018, vol. 6, no. 3, p. 3974.
  46. Liu, H., Wang, D., Shang, S., and Song, Z., Synthesis and characterization of Ag-Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites, Carbohydr. Polym., 2011, vol. 83, no. 1, p. 38.
  47. Liu, H., Wang, D., Song, Z., and Shang, S., Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization, Cellulose, 2011, vol. 18, no. 1, p. 67.
  48. Schlesinger, M., Giese, M., Blusch, L.K., Hamad, W.Y., and MacLachlan, M.J., Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose, Chem. Commun., 2015, vol. 51, p. 530.
  49. Zhang, T., Wang, W., Zhang, D., Zhang, X., Ma, Y., Zhou, Y., and Qi, L., Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing, Adv. Funct. Mater., 2010, vol. 20, p. 1152.
  50. Wang, W., Zhang, T.J., Zhang, D.W., Li, H.Y., Ma, Y.R., Qi, L.M., Zhou, Y.L., and Zhang, X.X., Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles–bacteria cellulose nanofibers nanocomposite, Talanta, 2011, vol. 84, p. 71.
  51. Drogat, N., Granet, R., Sol, V., Memmi, A., Saad, N., Koerkamp, C.K., Bressollier, P., and Krausz, P., Antimicrobial silver nanoparticles generated on cellulose nanocrystals, J. Nanoparticle Res., 2011, vol. 13, no. 4, p. 1557.
  52. Berndt, S., Wesarg, F., Wiegand, C., Kralisch, D., and Müller, F.A., Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles, Cellulose, 2013, vol. 20, p. 771.