Operando X-Ray Diffraction Analysis of a Microtubular La0.6Sr0.4Co0.2Fe0.8O3 – δ Membrane

B. V. Voloshin B. V. Voloshin , N. V. Bulina N. V. Bulina , M. P. Popov M. P. Popov , A. P. Nemudry A. P. Nemudry
Russian Journal of Electrochemistry
Abstract / Full Text

The high-temperature performance of a microtubular (MT) La0.6Sr0.4Co0.2Fe0.8O3 – δ (LSCF) membrane is studied by the operando high-temperature X-ray diffraction method. The LSCF powders are synthesized and the microtubular membranes are fabricated with the use of the phase inversion technique. The microtubular membranes are subjected to the direct resistive heating by electric current. It is shown that the outer surface of the MT membrane has the structure close to that of the LSCF powder at the same oxygen concentration in the gas phase not only when the feed gas is delivered outside the membrane but also when its external surface is blown around by pure helium at a rate of 200 mL/min.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

    B. V. Voloshin, N. V. Bulina, M. P. Popov & A. P. Nemudry

  • Novosibirsk State University, Novosibirsk, Russia

    B. V. Voloshin

  1. Pena, M.A. and Fierro, J.L.G., Chemical structure and performance of perovskite oxides, Chem. Rev., 2001, vol. 101, p. 1981.
  2. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., and Lin, Y.S., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 2008, vol. 320, p. 13.
  3. Marques, F.M.B., Kharton, V.V., Naumovich, E.N., Shaula, A.L., Kovalevsky, A.V., and Yaremchenko, A.A., Oxygen ion conductors for fuel cells and membranes: selected developments, Solid State Ionics, 2006, vol. 177, p. 1697.
  4. Pei, S., Kleefisch, M., Kobylinski, T.P., Faber, J., Udovich, C.A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R.L., and Poeppel, R.B., Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett.,1994, vol. 30, p. 201.
  5. ten Elshof, J.E., van Hassel, B.A., and Bouwmeester, H.J.M., Activation of methane using solid oxide membranes, Catal. Today,1995, vol. 25, p. 397.
  6. Leo, A., Liu, Sh., and Diniz da Costa, J.C., Development of mixed conducting membranes for clean coal energy delivery, Int. J. Greenh. Gas Con., 2009, vol. 3, p. 357.
  7. Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani, K., Progress in material selection for solid oxide fuel cell technology: a review, Prog. Mater. Sci.,2015, vol. 72, p. 141.
  8. Shao, Z.P., Yang, W.S., Cong, Y., Dong, H., Tong, J.H., and Xiong, G.X., Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 – δ oxygen membrane, J. Membr. Sci., 2000,vol. 172,p. 177.
  9. Shao, Z.P., Dong, H., Xiong, G.X., Cong, Y., and Yang, W.S., Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for membrane conversion, J. Membr. Sci., 2001,vol. 183, p. 181.
  10. Popov, M.P., Gainutdinov, I.I., Bychkov, S.F., and Nemudry, A.P., New approaches for enhancement of oxygen fluxes on hollow fiber membranes, Mater. Today: Proc., 2017, vol. 4, p. 11381.
  11. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct ac heating of oxygen transport membranes, Solid State Ionics, 2017, vol. 312, p. 73.
  12. Popov, M.P., Maslennikov, D.V., Gainutdinov, I.I., Gulyaev, I.P., Zagoruiko, A.N., and Nemudry, A.P., Compact solid oxide fuel cells and catalytic reformers based on microtubular membranes, Catal. Today, 2019, vol. 329, p. 167.
  13. Popov, M.P., Bychkov, S.F., Bulina, N.V., and Nemudry, A.P., In situ high-temperature X-ray diffraction of hollow fiber membranes under operating conditions, J. Eur. Ceram. Soc.,2019, vol. 39, p. 1717.
  14. Kovalev, I., Vorobyev, A., Bagishev, A., Popov, M., Sharafutdinov, M., Titkov, A., Bychkov, S., and Nemudry, A., Direct ac/dc heating of oxygen transport membranes, Energies, 2020, vol. 13, p. 30.
  15. Vibhu, V., Yildiz, S., Vinke, I. C., Eichel, R.-A., Bassat, J.-M., and de Haart, L.G.J., High performance LSC infiltrated LSCF oxygen electrode for high temperature steam electrolysis application, J. Electrochem. Soc., 2019, vol. 166, no. 2, p. F102.