Examples



mdbootstrap.com



 
Article
2020

Electrochemical Investigation of Lithium Ion Battery Including LiCo0.8Ni0.2O2, Li2MnO3, LiNiO2 Cathode Materials


M. MonajjemiM. Monajjemi, F. MollaaminF. Mollaamin, P. T. ThuP. T. Thu, M. OtadiM. Otadi, A. AlihosseiniA. Alihosseini, D. T. M. DungD. T. M. Dung, D. M. ChienD. M. Chien
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193520030076
Abstract / Full Text

(1 – nm)LiCo0.8Ni0.2O2 system was synthesized using the sol–gel method. Stoichiometric weights of the LiNO3, Mn(Ac)2 · 4H2O, Co(Ac)2 · 4H2O, Ni(NO3)2 · 6H2O for preparing of 28 samples have been used as starting materials of lithium, magnesium, cobalt and nickel, in 28 samples of (1 – nm)LiCo0.8Ni0.2O2, respectively. We exhibited “Li1.333Ni0.4Co0.267Mn0.333O2” is the best composition for cathode material among those compositions. Obviously, the used weight of cobalt in this sample is lower compared with LiCoO2 that is an advantage in view point of cost and toxic problem. Charge–discharge characteristics of the mentioned cathode materials were investigated by performing cycle tests in the range of 2.2–4.5 V. Our results confirmed, although these kind systems can help for removing the disadvantage of cobalt which mainly is its cost and toxic, the performance of these kind systems are similar to LiCoO2 cathode material.

Author information
  • Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, IranM. Monajjemi, M. Otadi & A. Alihosseini
  • Institute for Nanotechnology (INT), Vietnam National University-Ho Chi Minh City (VNUHCM), Ho Chi Minh City, VietnamM. Monajjemi, F. Mollaamin, P. T. Thu, D. T. M. Dung & D. M. Chien
References
  1. Advances in Lithium-Ion Batteries, Nishi, Y., Van Schalkwijk, W.A., and Scrosati, B., Eds., Boston, MA: Kluwer/ Springer, 2002.
  2. Lithium-Ion Batteries, Science and Technologies, Yoshio, M., Brodd, R.J., and Kozawa, A., Eds., New York: Springer-Verlag, 2009.
  3. Scrosati, B. and Garche, J., Lithium batteries: status, prospects and future, J. Power Sources, 2010, vol. 195, no. 9, p. 2419.
  4. Daniel, C. and Besenhard, J.O., Handbook of Battery Materials, 2nd ed., Wiley-VCH, 2011.
  5. Meyers, R.A., Encyclopedia of Sustainability Science and Technology, New York: Springer, 2012.
  6. Rossen, E., Jones, C.D.W., and Dahn, J.R., Structure and electrochemistry of LixMnyNi1 −yO2, Solid State Ionics, 1992, vol. 57, no. 3-4, p. 311.
  7. Spahr, M.E., et al., Characterization of layered lithium nickel manganese oxides synthesizedbya novel oxidative co-precipitation method and their electrochemical performance as lithium insertion electrode materials, J. Electron. Soc., 1998, vol. 145, no. 4, p. 1113.
  8. Ohzuku, T. and Makimura, Y., Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries, Chem. Lett., 2001, vol. 30, no. 8, p. 744.
  9. Makimura, Y. and Ohzuku, T., Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries, J. Power Sources, 2003, vols. 119–121, p. 156.
  10. Liu, Z., Yu, A., and Lee, J.Y., Synthesis and characterization of LiNi1 −xyCoxMnyO2 as the cathodematerials of secondary lithium batteries, J. Power Sources, 1999, vol. 81–82, p. 416.
  11. Yoshio, M., et al.,  Preparation  and properties of LiCoyMnxNi1 −xyO2 as a cathode for lithium ion batteries, J. Power Sources, 2000, vol. 90, no. 2, p. 176.
  12. Ohzuku, T. and Makimura, Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 2001, vol. 30, no. 7, p. 642.
  13. Belharouak, I., et al., Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications, J. Power Sources, 2003, vol. 123, no. 2, p. 247.
  14. Ngala, J.K., et al., The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound, J. Mat. Chem., 2004, vol. 14, no. 2, pp. 214–220.
  15. Yoon, W.S., et al., A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD, Electrochem. Commun., 2006, vol. 8, no. 8, p. 1257.
  16. Ammundsen, B., et al., Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material, J. Electron. Soc., 2002, vol. 149, no. 4, p. A431.
  17. Thackeray, M.M., et al., Advances in manganese-oxide composite electrodes for lithium-ion batteries, J. Mat. Chem., 2005, vol. 15, no. 23, p. 2257.
  18. Zhang, L., Noguchi, H., and Yoshio, M., Synthesis and electrochemical properties of layered Li–Ni–Mn–O compounds, J. Power Sources, 2002, vol. 110, no. 1, p. 57.
  19. Shin, S.S., Sun, Y.K., and Amine, K., Synthesis and electrochemical properties of Li[Li(1 – 2x)/3NixMn(2 – x)/3]O2 as cathode materials for lithium secondary batteries, J. Power Sources, 2002, vol. 112, no. 2, p. 634.
  20. Hailang, Z. and Wen-Hua, S., Synthesis and characterization of LiNi0.7 –xMgxCo0.3O2 (0 ≤ x ≤ 0.1) cathode materials for lithium-ion batteriesprepared by a sol–gel method, Adv. Mater. Sci. Eng., 2014, no. 3, p. 1.
  21. Monajjemi, M., Mahdavian, L., and Mollaamin, F., Characterization of nanocrystalline silicon germanium film and nanotube in adsorption gas by Monte Carlo and Langevin dynamic simulation, Bull. Chem. Soc. Ethiopia, 2008, vol. 22, no. 2, p. 277.
  22. Lee, V.S., Nimmanpipug, P., Mollaamin, F., Thanasanvorakun, S., and Monajjemi, M., Investigation of single wall carbon nanotubes electrical properties and normal mode analysis: dielectric effects, Russ. J. Phys. Chem. A, 2009, vol. 83, no. 13, p. 2288.
  23. Monajjemi, M. and Ahmadianarog, M., Carbon nanotube as a deliver for sulforaphane in Broccoli vegetable in point of nuclear magnetic resonance and natural bond orbital specifications, J. Comput. Theor. Nanosci., 2014, vol. 11, no. 6, p. 1465.
  24. Monajjemi, M., Farahani, N., and Mollaamin, F., Thermodynamic study of solvent effects on nanostructures: phosphatidylserine and phosphatidylinositol membranes, Phys. Chem. Liq., 2012, vol. 50, no. 2, p. 161.
  25. Monajjemi, M., Mahdavian, L., Mollaamin, F., and Honarparvar, B., Thermodynamic investigation of enolketotautomerism for alcohol sensors based on carbon nanotubes as chemical sensors, Fullerenes, Nanotubes, Carbon Nanostruct., 2010, vol. 18, no. 1, p. 45.
  26. Ehrlich, G.M. and Linden, D., Handbook of Lithium-Ion Batteries, McGraw-Hill, 2002, p. 35.
  27. Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., and Liu, J., Electrochemical energy storage for green grid, Chem. Rev., 2011, vol. 111, p. 3577.