Examples



mdbootstrap.com



 
Article
2018

Highly Sensitive Nanostructured Electrochemical Sensor Based on Carbon Nanotubes-Pt Nanoparticles Paste Electrode for Simultaneous Determination of Levodopa and Tyramine


Mehdi BaghayeriMehdi Baghayeri, Hadi BeitollahiHadi Beitollahi, Ali AkbariAli Akbari, Samaneh FarhadiSamaneh Farhadi
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193517120023
Abstract / Full Text

A multicomponent electrochemical sensor, with two nanometer-scale components in sensing matrix/electrode, was used to simultaneous determination of levodopa (LD) and tyramine (TR) in pharmaceutical and diet samples. Multiwall carbon nanotubes (MWCNTs) were used as carbonaceous materials in the electrode construction. 5-amino-3',4'-dimethoxy-biphenyl-2-ol (5ADMB) was used as electron mediator and Pt nanoparticles (nPt) as a catalyst. The 5ADMB catalyzes the oxidation of LD to the corresponding catecholamine, which is electrochemically reduced back to LD. Preparation of this electrode was very simple and modified electrode showed good properties at electrocatalytic oxidization of LD and TR. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of LD and TR has been explored at the modified electrode. Differential pulse voltammetry peak currents of LD and TR increased linearly with their concentrations at the ranges of 0.50–100.0 μM and 0.60–100.0 μM, respectively. Also, the detection limits for LD and TR were 0.31 and 0.52 μM, respectively. The electrode exhibited an efficient catalytic response with good reproducibility and stability.

Author information
  • Department of Chemistry, Faculty of Science, Hakim Sabzevari University, P.O. Box 397, Sabzevar, IranMehdi Baghayeri & Samaneh Farhadi
  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, IranHadi Beitollahi
  • Department of Chemistry, University of Jiroft, Jiroft, IranAli Akbari
References
  1. Hernández-Cázares, A.S., Aristoy, M.C., and Toldrá, F., J. Food Eng., 2011, vol. 110, p. 324.
  2. Bulushi, I.A., Poole, S., Deeth, H.C., and Dykes, G.A., Crit. Rev. Food Sci. Nutr., 2009, vol. 49, p. 369.
  3. Önal, A., Food Chem., 2007, vol. 103, p. 1475.
  4. Lovenberg, W., Some vaso- and psychoactive substances in food, toxicants occurring naturally in foods, 2nd ed., Natl. Acad. Sci., Washington DC, 1973.
  5. Masson, F., Talon, R., and Montel, M.C., Int. J. Food Microbiol., 1996, vol. 32, p. 199.
  6. Santos-Buelga, C., Nogales-Alarcon, A., and Marine-Font, A., J. Food Sci., 1981, vol. 46, p. 1794.
  7. Lapainis, T., Scanlan, C., Rubakhin, S.S., and Sweedler, J.V., Anal. Bioanal. Chem., 2007, vol. 387, p. 97.
  8. Ladero, V., Martínez, N., Martín, M.C., Fernández, M., and Alvarez, M.A., Food Res. Int., 2010, vol. 43, p. 289.
  9. Huang, K.J., Wei, C.Y., Liu, W.L., Xie, W.Z., Zhang, J.F., and Wang, W., J. Chromatogr. A, 2009, vol. 1216, p. 6636.
  10. Banks, C.N. and Adams, M.E., Toxicon, 2012, vol. 59, p. 320.
  11. Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., and Nejati, M., Bioelectrochemistry, 2009, vol. 75, p. 1.
  12. Huang, J., Xing, X., Zhang, X., He, X., Lin, Q., Lian, W., and Zhu, H., Food Res. Int., 2011, vol. 44, p. 276.
  13. Daneshgar, P., Norouzi, P., Ganjali, M.R., Ordikhani-Seyedlar, A., and Eshraghi, H., Colloid. Surf. B, 2009, vol. 68, p. 27.
  14. Tolokan, A., Klebovich, I., Balogh-Nemes, K., and Horvai, G., J. Chromatogr. B, 1997, vol. 698, p. 201.
  15. Zhao, S., Bai, W., Wang, B., and He, M., Talanta, 2007, vol. 73, p. 142.
  16. Teixeira, M.F., Bergamini, M.F., Marques, C.M., and Bocchi, N., Talanta, 2004, vol. 63, p. 1083.
  17. Shahrokhian, S. and Asadian, E., J. Electroanal. Chem., 2009, vol. 636, p. 40.
  18. Stockley, I.H., Monoamine Oxidase Inhibitor Drug Interactions, Oxford, U.K.: Drug Interactions, Blackwell Scientific Publications, 1993.
  19. Lin, J. and Cashman, J.R., Chem. Res. Toxicol., 1997, vol. 10, p. 842.
  20. Marley, E., Blackwell, B., and Histamine, D., Adv. Pharmacol. Chemother., 1971, vol. 8, p. 185.
  21. Merino, M., Nuñez-Vergara, L.J., and Squella, J.A., Electroanalysis, 1999, vol. 11, p. 1285.
  22. Beitollahi, H. and Mostafavi, M., Electroanalysis, 2014, vol. 26, p. 1090.
  23. Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., and Soltani, H., Electroanalysis, 2015, vol. 27, p. 2620.
  24. Beitollahi, H. and Nekooei, S., Electroanalysis, 2015, vol. 28, p. 645.
  25. Jahani, S. and Beitollahi, H., Electroanalysis, 2016, vol. 28, no. 9, p. 2022. doi 10.1002/elan.201501136
  26. Molaakbari, E., Mostafavi, A., Beitollahi, H., and Alizadeh, R., Analyst, 2014, vol. 139, p. 4356.
  27. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Anal. Chem., 2008, vol. 80, p. 9848.
  28. Beitollahi, H., Gholami, A., and Ganjali, M.R., Mat. Sci. Eng. C, 2015, vol. 57, p. 107.
  29. Baghayeri, M., Amiri, A., and Farhadi, S., Sens. Actuat. B, 2016, vol. 225, p. 354.
  30. Yoon, J.H., Muthuraman, G., Yang, J., Shim, Y.B., and Won, M. S., Electroanalysis, 2007, vol. 19, p. 1160.
  31. Karam, P., Xin, Y., Jaber, S., and Halaoui, L.I., J. Phys. Chem. C, 2008, vol. 112, p. 13846.
  32. Zheng, S.F., Hu, J.S., Zhong, L.S., Wan, L.J., and Song, W.G., J. Phys. Chem. C, 2007, vol. 111, p. 11174.
  33. Raoof, J.B., Baghayeri, M., and Ojani, R., Colloid. Surf. B, 2012, vol. 95, p. 121.
  34. Beitollahi, H., Ardakani, M.M., Ganjipour, B., and Naeimi, H., Biosens. Bioelectron., 2008, vol. 24, p. 362.
  35. Mazloum-Ardakani, M., Ganjipour, B., Beitollahi, H., Amini, M.K., Mirkhalaf, F., Naeimi, H., and Nejati-Barzoki, M., Electrochim. Acta, 2011, vol. 56, p. 9113.
  36. Laviron, E., J. Electroanal. Chem., 1974, vol. 52, p. 355.
  37. Beitollahi, H., Mohadesi, A., Mahani, S.K., and Akbari, A., Anal. Methods, 2012, vol. 4, p. 1029.
  38. Pournaghi-Azar, M.H. and Razmi-Nerbin, H., J. Electroanal. Chem., 2000, vol. 488, p. 17.
  39. Raoof, J.B., Ojani, R., Amiri-Aref, M., and Baghayeri, M., Sens. Actuat. B, 2012, vol. 166, p. 508.
  40. Raoof, J.B., Ojani, R., Baghayeri, M., and Amiri-Aref, M., Anal. Methods, 2012, vol. 4, p. 1579.
  41. Goyal, R.N., Gupta, V.K., and Bachheti, N., Anal. Chim. Acta, 2007, vol. 597, p. 82.
  42. Sanghavi, B.J. and Srivastava, A.K., Analyst, 2013, vol. 138, p. 1395.
  43. Atta, N.F., El-Kady, M.F., and Galal, A., Anal. Biochem., 2010, vol. 400, p. 78.