Examples



mdbootstrap.com



 
Article
2018

Electrochemical Properties of Overoxidized Poly-3,4-Ethylenedioxythiophene


M. A. KamenskyM. A. Kamensky, S. N. EliseevaS. N. Eliseeva, G. LángG. Láng, M. UjváriM. Ujvári, V. V. KondratievV. V. Kondratiev
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193518130219
Abstract / Full Text

The properties of poly(3,4-ethylenedioxythiophene) (PEDOT) films were studied electrochemically at high positive potentials (from–0.3 to 1.5 V relative to the Ag/AgCl electrode). A cyclic voltammetry (CV) study revealed the range of potentials (up to 1.3–1.5 V) where the cycling leads to significant changes in the electrochemical, structural, and morphological properties of the polymer film due to overoxidation. When the upper cycling potential Eup exceeded 1.4 V, the anodic current significantly increased during the first cycle and then decreased, which suggests a loss of the electroactivity of the polymer and degradation of its properties. In the high-frequency region of the impedance spectra of the PEDOT films, a semicircle appears after overoxidation, which indicates a notable increase of the charge transfer resistance in the system, in contrast to the films subjected to potentiodymanic processing in a limited range of potentials from–0.3 to 1.3 V. The effect of overoxidation on the polymer morphology was studied by scanning electron microscopy. The chemical state of elements in the structure of the polymer film was determined by X-ray photoelectron spectroscopy. The obtained data indicate that–S=O groups formed at the thiophene sulfur in the polymer.

Author information
  • St. Petersburg State University, Institute of Chemistry, St. Petersburg, 199034, RussiaM. A. Kamensky, S. N. Eliseeva & V. V. Kondratiev
  • Eötvös Loránd University, Institute of Chemistry, Budapest, 1117, HungaryG. Láng & M. Ujvári
References
  1. Tourillon, G., in Handbook of Conducting Polymers, Skotheim, T.A., Ed., New York: Marcel Dekker, 1986.
  2. Heinze, J. Electronically Conducting Polymers, in Top. Curr. Chem., vol. 152, Springer, 1990, p. 1.
  3. Roncali, J., Conjugated Poly(Thiophenes): Synthesis, Functionalization, and Applications, Chem. Rev. (Washington, DC, U.S.), 1992. doi 10.1021/Cr00012a009
  4. Inzelt, G., Pineri, M., Schultze, J.W., and Vorotyntsev, M.A., Electron and proton conducting polymers: recent developments and prospects, Electrochim. Acta, 2000, vol. 45, p. 1016. doi 10.1016/S0013-4686(00)00329-7
  5. Novak, P., Muller, K., Santhanam, K.S.V., and Haas, O., Electrochemically active polymers for rechargeable batteries, Chem. Rev. (Washington, DC, U. S.), 1997. doi 10.1021/Cr941181o
  6. Inzelt, G., Conducting Polymers: A New Era in Electrochemistry, Berlin: Springer, 2008.
  7. Inzelt, G., Rise and rise of conducting polymers, J. Solid State Electrochem., 2011, vol. 15, p. 1007. doi 10.1007/s10008-011-1338-3
  8. Holze, R. and Wu, Y.P., Intrinsically conducting polymers in electrochemical energy technology: Trends and progress, Electrochim. Acta, 2014, vol. 122, p. 1016. doi 10.1016/j.electacta.2013.08.100
  9. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R., Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future, Adv. Mater., 2000, vol. 12, p. 481. doi 10.1002/(sici)1521-4095(200004)12:7<481::aid-adma481>3.0.co;2-c
  10. Murugan, A.V., Kwon, C.W., Campet, G., Kale, B.B., Maddanimath, T., and Vijayamohanan, K., Electrochemical lithium insertion into a poly(3,4-ethylenedioxythiophene) PEDOT/V2O5 nanocomposite, J. Power Sources, 2002, vol. 105, p. 1. doi 10.1016/s0378-7753(01)00992-2
  11. Arbizzani, C., Balducci, A., Mastragostino, M., Rossi, M., and Soavi, F., Characterization and electrochemical performance of Li-rich manganese oxide spinel/poly(3,4-ethylenedioxythiophene) as the positive electrode for lithium-ion batteries, J. Electroanal. Chem., 2003, vol. 553, p. 125. doi 10.1016/S0022-0728(03)00305-X
  12. Murugan, A.V., Viswanath, A.K., Campet, G., Gopinath, C.S., and Vijayamohanan, K., Enhancement of double-layer capacitance behavior and its electrical conductivity in layered poly(3,4-ethylenedioxythiophene)-based nanocomposites, Appl. Phys. Lett., 2005, vol. 87. doi 10.1063/1.2140468
  13. Murugan, A.V., Novel organic-inorganic poly(3,4-ethylenedioxythiophene) based nanohybrid materials for rechargeable lithium batteries and supercapacitors, J. Power Sources, 2006, vol. 159, p. 312. doi 10.1016/j.jpowsour.2006.04.033
  14. Zhan, L.Z., Song, Z.P., Zhang, J.Y., Tang, J., Zhan, H., Zhou, Y.H., and Zhan, C.M., PEDOT: Cathode active material with high specific capacity in novel electrolyte system, Electrochim. Acta, 2008, vol. 53, p. 1016. doi 10.1016/j.electacta.2008.06.053
  15. Lei, C.H., Wilson, P., and Lekakou, C., Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors, J. Power Sources, 2011, vol. 196, p. 7823. doi 10.1016/j.jpowsour.2011.03.070
  16. Fabre-Francke, I., Aubert, P.H., Alfonsi, S., Vidal, F., Sauques, L., and Chevrot, C., Electropolymerization of 3,4-ethylenedioxythiophene within an insulating nitrile butadiene rubber network: Application to electroreflective surfaces and devices, Sol. Energy Mater. Sol. Cells, 2012, vol. 99, p. 109. doi 10.1016/j.solmat. 2011.07.004
  17. Hong, S.F. and Chen, L.C., Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows, Sol. Energy Mater. Sol. Cells, 2012, vol. 104, p. 1016. doi 10.1016/j.solmat.2012.04.032
  18. Romyen, N., Thongyai, S., Praserthdam, P., and Sotzing, G.A., Enhancement of poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonate) properties by poly(vinyl alcohol) and doping agent as conductive nano-thin film for electronic application, J. Mater. Sci.: Mater. Electron., 2013, vol. 24, p. 2897. doi 10.1007/s10854-013-1188-0
  19. Trinh, N.D., Saulnier, M., Lepage, D., and Schougaard, S.B., Conductive polymer film supporting LiFePO4 as composite cathode for lithium ion batteries, J. Power Sources, 2013, vol. 221, p. 284. doi 10.1016/j.jpowsour.2012.08.006
  20. Kim, J., Park, H.S., Kim, T.H., Kim, S.Y., and Song, H.K., An inter-tangled network of redox-active and conducting polymers as a cathode for ultrafast rechargeable batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 1039. doi 10.1039/C3cp54624a
  21. Wang, X., Shen, L., Li, H., Wang, J., Dou, H., and Zhang, X., PEDOT coated Li4 Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties, Electrochim. Acta, 2014, vol. 129, p. 283. doi 10.1016/j.electacta.2014.02.112
  22. Cintora-Juarez, D., Perez-Vicente, C., Kazim, S., Ahmad, S., and Tirado, J.L., Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries, J. Mater. Chem. A, 2015, vol. 3, p. 14254. doi 10.1039/c5ta03542b
  23. Das, P.R., Komsiyska, L., Osters, O., and Wittstock, G., PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. 1149. doi 10.1149/2.0581504jes
  24. Eliseeva, S.N., Levin, O.V., Tolstopjatova, E.G., Alekseeva, E.V., Apraksin, R.V., and Kondratiev, V.V., New functional conducting poly-3,4-ethylenedioxythiophene: polystyrene sulfonate/carboxymethycellulose binder for improvement of capacity of LiFePO4-based cathode materials, Mater. Lett., 2015, vol. 161, p. 117. doi 10.1016/j.matlet.2015.08.078
  25. Eliseeva, S.N., Levin, O.V., Tolstopyatova, E.G., Alekseeva, E.V., and Kondratiev, V.V., Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries, Russ. J. Appl. Chem., 2015, vol. 88, p. 1146. doi 10.1134/S1070427215070071
  26. Lee, J. and Choi, W., Surface Modification of Over-Lithiated Layered Oxides with PEDOT:PSS Conducting Polymer in Lithium-Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. 1149. doi 10.1149/2.0801504jes
  27. Smolin, A.M., Novoselov, N.P., Babkova, T.A., Eliseeva, S.N., and Kondrat’ev, V.V., Use of composite films based on poly(3,4-ethylenedioxythiophene) with inclusions of palladium nanoparticles in voltammetric sensors for hydrogen peroxide, J. Anal. Chem., 2015, vol. 70, p. 967. doi 10.1134/S1061934815080171
  28. Tolstopjatova, E.G., Eliseeva, S.N., Nizhegorodova, A.O., and Kondratiev, V.V., Electrochemical Properties of Composite Electrodes, Prepared by Spontaneous Deposition of Manganese Oxide into Poly-3,4-ethylenedioxythiophene, Electrochim. Acta, 2015, vol. 173, p. 40. doi 10.1016/j.electacta/2015.05.033
  29. Zykwinska, A., Domagala, W., Pilawa, B., and Lapkowski, M., Electrochemical overoxidation of poly(3,4-ethylenedioxythiophene)—PEDOT studied by means of in situ ESR spectroelectrochemistry, Electrochim. Acta, 2005, vol. 50, p. 1625. doi 10.1016/j.electacta. 2004.10.026
  30. Ujvári, M., Takacs, M., Vesztergom, S., Bazso, F., Ujhelyi, F., and Láng, G.G., Monitoring of the electrochemical degradation of PEDOT films on gold using the bending beam method, J. Solid State Electrochem., 2011, vol. 15, p. 1007. doi 10.1007/s10008-011-1472-y
  31. Láng, G.G., Ujvári, M., Bazso, F., Vesztergom, S., and Ujhelyi, F., In situ monitoring of the electrochemical degradation of polymer films on metals using the bending beam method and impedance spectroscopy, Electrochim. Acta, 2012, vol. 73, p. 1016. doi 10.1016/j.electacta. 2012.01.068
  32. Ujvári, M., Zalka, D., Vesztergom, S., Eliseeva, S., Kondratiev, V., and Láng, G.G., Electrochemical impedance measurements in non-stationary systems: application of the 4-dimensional analysis method for the impedance analysis of overoxidized poly(3,4-ethylenedioxythiophene)-modified electrodes, Bulg. Chem. Commun., 2017, vol. 49, p. 106.
  33. Ujvári, M., Gubicza, J., Kondratiev, V., Szekeres, K.J., and Láng, G.G., Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation, J. Solid State Electrochem., 2015, vol. 19, p. 1247. doi 10.1007/s10008-015-2746-6
  34. Láng, G.G., Ujvári, M., Vesztergom, S., Kondratiev, V., Gubicza, J., and Szekeres, K.J., The Electrochemical Degradation of Poly(3,4-ethylenedioxythiophene) Films Electrodeposited from Aqueous Solutions, Z. Phys. Chem., 2016, vol. 230, p. 1281. doi 10.1515/zpch-2016-0752
  35. Zhuzhel’skii, D.V., Yalda, K.D., Spiridonov, V.N., Eliseeva, S.N., and Kondratiev, V.V., Electrochemical deposition of molybdenum oxide into films of poly(3,4-ethylenedioxythiophene) conducting polymer on glassy carbon substrates, Russ. J. Appl. Chem., 2016, vol. 89, p. 1252. doi 10.1134/s1070427216080061
  36. Kondratiev, V.V., Malev, V.V., and Eliseeva, S.N., Composite electrode materials based on conducting polymers loaded with metal nanostructures, Russ. Chem. Rev., 2016, vol. 85, p. 1070. doi 10.1070/rcr4509
  37. Fall, M., Diagne, A.A., Dieng, M.M., Deflorian, F., Rossi, S., Bonora, P.L., Volpe, C.D., and Aaron, J.J., Electrochemical impedance spectroscopy of poly(3-methoxythiophene) thin films in aqueous LiClO4 solutions, Synth. Met., 2005, vol. 155, p. 569. doi 10.1016/j.synthmet.2005.09.043
  38. Refaey, S.A.M., Electrochemical impedance studies on the electrochemical properties of poly(3-methylthiophene) in aqueous solutions, Synth. Met., 2004, vol. 140, p. 87. doi 10.1016/s0379-6779(03)00357-6
  39. Greczynski, G., Kugler, T., Keil, M., Osikowicz, W., and Fahlman, M., and Salaneck, W.R., Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results, J. Electron Spectrosc. Relat. Phenom., 2001, vol. 121, p. 1016. doi 10.1016/s0368-2048(01)00323-1
  40. King, Z.A., Shaw, C.M., Spanninga, S.A., and Martin, D.C., Structural, chemical and electrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) prepared with various counter-ions and heat treatments, Polymer, 2011, vol. 52, p. 1302. doi 10.1016/j.polymer.2011.01.042