Article
2021

Low-Temperature Operation Features of Proton-Exchange Membrane Fuel Cells with an Active Air Cooling


A. I. Rodygin A. I. Rodygin , A. P. Melnikov A. P. Melnikov , K. G. Ivashkin K. G. Ivashkin , A. V. Sivak A. V. Sivak , A. M. Kashin A. M. Kashin , D. A. Ivanov D. A. Ivanov
Russian Journal of Electrochemistry
https://doi.org/10.1134/S102319352109007X
Abstract / Full Text

Development of operation algorithms and proper design of proton exchange membrane fuel cell stacks for effective operation at various external climatic conditions are the main issues need to be addressed for the widespread implementation of this technology. The main challenge for northern regions is to provide a rapid start-up procedure of stack from low temperatures to operation conditions without any damage. In this work, we studied the features of low-temperature operation and proposed an effective low-temperature start-up algorithm of low power (up to 100 W) open-air cathode stack with active air-cooling technology.

Author information
  • Moscow Institute of Physics and Technology, Dolgoprudny, Russia

    A. I. Rodygin, A. P. Melnikov & D. A. Ivanov

  • Lomonosov Moscow State University, Moscow, Russia

    A. P. Melnikov & D. A. Ivanov

  • Institute of Problems of Chemical Physics of RAS, Chernogolovka, Russia

    A. P. Melnikov, A. M. Kashin & D. A. Ivanov

  • InEnergy LLC, Moscow, Russia

    A. I. Rodygin, A. P. Melnikov, K. G. Ivashkin, A. V. Sivak & A. M. Kashin

References
  1. E4TECH, Fuel Cell Industry Review, 2017.
  2. Steele, B. and Heinzel, A., Materials for fuel-cell technologies, Nature, 2001, vol. 414, p. 345.
  3. Jiang, W., Song, K., Zheng, B., Xu, Y., and Fang, R., Study on fast cold start-up method of proton exchange membrane fuel cell based on electric heating technology, Energies, 2020, vol. 13, no. 17, p. 4456.
  4. Bin Mohamad, A., A review of experiments on cold start of PEM fuel cells, Appl. Mech. Mater., 2013, vol. 315, p. 851.
  5. Tajiri, K., Tabuchi, Y., and Wang, C.-Y., Isothermal cold start of polymer electrolyte fuel cells, J. Electrochem. Soc., 2007, vol. 154, no. 2, p. 147.
  6. Bégot, S., Harel, F., and Kauffmann, J.M., Design and validation of a 2 kW-fuel cell test bench for subfreezing studies, Fuel Cells, 2008, vol. 8, no. 2, p. 138.
  7. U.S. DOE. Progress Report for Hydrogen, Fuel Cells, and Infrastructure Technologies Program, 2002.
  8. Wan, Z., Chang, H., Shu, S., Wang, Y., and Tang, H., A review on cold start of proton exchange membrane fuel cells, Energies, 2014, vol. 7, no. 5, p. 3179.
  9. Gupta, M., Zhu, X., Melnikov, A.P., Mugtasimova, K.R., Maryasevskaya, A.V., and Ivanov, D.A., Sulfonated polyimide-silica composite membranes: preparation, morphology and proton conductivity, Nanotechnol. Russ., 2020, vol. 15, no. 11–12, p. 778.
  10. Amamou, A., Boulon, L., Kelouwani, S., Agbossou, K., and Sicard, P., Thermal management strategies for cold start of automotive PEMFC, Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), Montreal, 2015, p. 1.
  11. Song, Y., Zhang, C., Ling, C.-Y., Han, M., Yong, R.-Y., Sun, D., and Chen, J., Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2019, vol. 45, no. 54, p. 29832.
  12. Töpler, J. and Lehmann, J., Hydrogen and Fuel Cell, Berlin, Heidelberg: Springer-Verlag, 2016.