Article
2021

Electrochemical Determination of Paracetamol in Blood and Pharmaceutical Formulations Using Activated Carbon Electrode


F. Laghrib F. Laghrib , H. Hammani H. Hammani , A. Farahi A. Farahi , S. Lahrich S. Lahrich , A. Aboulkas A. Aboulkas , M. A. El Mhammedi M. A. El Mhammedi
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193520120101
Abstract / Full Text

Determination of hepatotoxic drugs is critical for both clinical diagnosis and quantity control of their pharmaceutical formulations. In this work, an economic, rapid, simple, sensitive and selective sensor based on graphite carbon modified by activated carbon (AC–CPE) has been developed for the detection of paracetamol (PCT). The AC–CPE showed an electro-catalytic activity for the redox reaction of paracetamol with the catalytic reaction rate constant of K = 12.81 × 104 mol L–1 s–1. The proposed method was successfully used for the determination of paracetamol in pharmaceutical formulations and blood samples.

Author information
  • Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000, Khouribga, Morocco

    F. Laghrib, H. Hammani, A. Farahi, S. Lahrich & M. A. El Mhammedi

  • Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Cité Dakhla, Agadir, Morocco

    A. Farahi

  • Materials Science and Nanoengineering Department, Mohamed 6 Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Benguerir, Morocco

    H. Hammani & A. Aboulkas

References
  1. Rowden, A.K., Norvell, J., Eldridge, D.L., and Kirk, M.A., Acetaminophen poisoning, Clin. Lab. Med., 2006, vol. 26, p. 49.
  2. Heard, K.J., Acetylcysteine for acetaminophen poisoning, N. Engl. J. Med., 2008, vol. 359, p. 285.
  3. Blake, K.V., Bailey, D., Zientek, G.M., and Hendeles, L., Death of a child associated with multiple overdoses of acetaminophen, Clin. Pharm., 1988, vol. 7, p. 391.
  4. Toklu, H.Z., Şehirli, A.Ö., Velioğlu-Öğünç, A., Çetinel, Ş., and Şener, G., Acetaminophen-induced toxicity is prevented by β-D-glucan treatment in mice, Eur. J. Pharmacol., 2006, vol. 543, p. 133.
  5. Idris, M., John, C., Ghosh, P., Shukla, S.K., and Baggi, T.R.R., Simultaneous determination of methaqaulone, saccharin, paracetamol, and phenacetin in illicit drug samples by HPLC, J. Anal. Sci. Technol., 2013, vol. 4, p. 4.
  6. Gopinath, R., Rajan, S., Meyyanathan, S.N., Krishnaveni, N., and Suresh, B., A RP–HPLC method for simultaneous estimation of paracetamol and aceclofenac in tablets, Indian J. Pharm. Sci., 2007, vol. 69, p. 137.
  7. Abdelaleem, E.A. and Abdelwahab, N.S., Validated stability indicating RP–HPLC method for determination of paracetamol, methocarbamol and their related substances, Anal. Methods, 2013, vol. 5, p. 541.
  8. Baranowska, I. and Kowalski, B., The development of SPE procedures and an UHPLC method for the simultaneous determination of ten drugs in water samples, Water Air Soil Pollut., 2010, vol. 211, p. 417.
  9. Hadad, G.M., Emara, S., and Mahmoud, W.M., Development and validation of a stability indicating RP–HPLC method for the determination of paracetamol with dantrolene or/and cetirizine and pseudoephedrine in two pharmaceutical dosage forms, Talanta, 2009, vol. 79, p. 1360.
  10. Belal, T., Awad, T., and Clark, C.R., Determination of paracetamol and tramadol hydrochloride in pharmaceutical mixture using HPLC and GC–MS, J. Chromatogr. Sci., 2009, vol. 47, p. 849.
  11. Lohmann, W. and Karst, U., Simulation of the detoxification of paracetamol using on-line electrochemistry/liquid chromatography/mass spectrometry, Anal. Bioanal. Chem., 2006, vol. 386, p. 1701.
  12. Lou, H.G., Yuan, H., Ruan, Z.R., and Jiang, B., Simultaneous determination of paracetamol, pseudoephedrine, dextrophan and chlorpheniramine in human plasma by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2010, vol. 878, p. 682.
  13. Khanmohammadi, M., Soleimani, M., Morovvat, F., Garmarudi, A.B., Khalafbeigi, M., and Ghasemi, K., Simultaneous determination of paracetamol and codeine phosphate in tablets by TGA and chemometrics, Thermochim. Acta, 2012, vol. 530, p. 128.
  14. Mallah, M.A., Sherazi, S.T.H., Bhanger, M.I., Mahesar, S.A., and Bajeer, M.A., A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations, Spectrochim. Acta A, 2015, vol. 141, p. 64.
  15. Sirajuddin, Khaskheli, A.R., Shah, A., Bhanger, M.I., Niaz, A., and Mahesar, S., Simpler spectrophotometric assay of paracetamol in tablets and urine samples, Spectrochim. Acta A, 2007, vol. 68, p. 747.
  16. Lyndgaard, L.B., Van den Berg, F., and de Juan, A., Quantification of paracetamol through tablet blister packages by Raman spectroscopy and multivariate curve resolution-alternating least squares, Chemomet. Intell. Lab. Syst., 2013, vol. 125, p. 58.
  17. Li, H., Zhang, C., Wang, J., Jiang, Y., Fawcett, J.P., and Gu, J., Simultaneous quantitation of paracetamol, caffeine, pseudoephedrine, chlorpheniramine and cloperastine in human plasma by liquid chromatography–tandem mass spectrometry, J. Pharmaceut. Biomed. Anal., 2010, vol. 51, p. 716.
  18. Silvestre, V., Mboula, V.M., Jouitteau, C., Akoka, S., Robins, R.J., and Remaud, G.S., Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol, J. Pharmaceut. Biomed. Anal., 2009, vol. 50, p. 336.
  19. Moreira, A.B., Oliveira, H.P.M., Atvars, T.D.Z., Dias, I.L.T., Neto, G.O., Zagatto, E.A.G., and Kubota, L.T., Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy, Anal. Chim. Acta, 2005, vol. 539, p. 257.
  20. Oliva, M.A., Olsina, R.A., and Masi, A.N., Selective spectrofluorimetric method for paracetamol determination through coumarinic compound formation, Talanta, 2005, vol. 66, p. 229.
  21. Madrakian, T., Afkhami, A., and Mohammad Nejad, M., Second-order advantage applied to simultaneous spectrofluorimetric determination of paracetamol and mefenamic acid in urine samples, Anal. Chim. Acta, 2009, vol. 645, p. 25.
  22. Saha, A., Tiwary, A.S., and Mukherjee, A.K., Charge transfer interaction of 4-acetamidophenol (paracetamol) with 2,3-dichloro-1,4-naphthoquinone: a study in aqueous ethanol medium by UV–vis spectroscopic and DFT methods, Spectrochim. Acta A, 2008, vol. 71, p. 835.
  23. Abirami, G. and Vetrichelvan, T., Simultaneous determination of tolperisone and paracetamol in pure a fixed dose combination by UV-spectrophotometry, Int. J. Pharm. Pharm. Sci., 2013, vol. 5, p. 488.
  24. Zhao, S., Bai, W., Yuan, H., and Xia, D., Detection of paracetamol by capillary electrophoresis with chemiluminescence detection, Anal. Chim. Acta, 2006, vol. 559, p. 195.
  25. Sultan, M.A., Maher, H.M., Alzoman, N.Z., Alshehri, M.M., Rizk, M.S., Elshahed, M.S., and Olah, L.V., Capillary electrophoretic determination of antimigraine formulations containing caffeine, ergotamine, paracetamol and domperidone or metoclopramide, J. Chromatogr. Sci., 2013, vol. 51, p. 502.
  26. Goyal, R.N. and Singh, S.P., Voltammetric determination of paracetamol at C60-modified glassy carbon electrode, Electrochim. Acta, 2006, vol. 51, p. 3008.
  27. Sanghavi, B.J. and Srivastava, A.K., Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode, Electrochim. Acta, 2010, vol. 55, p. 8638.
  28. Khaskheli, A.R., Fischer, J., Barek, J., Vyskocil, V., Sirajuddina, and Bhanger, M.I., Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural, Electrochim. Acta., 2013, vol. 101, p. 238.
  29. Bankim, J., Sanghavi, and Ashwini, K., Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode, Anal. Chim. Acta, 2011, vol. 706, p. 246.
  30. Narayana, P.V., Reddy, T.M., Gopala, P., and Naidu, G.R., Electrochemical sensing of paracetamol and its simultaneous resolution in the presence of dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine) composite modified electrode, Anal. Methods, 2014, vol. 6, p. 9459.
  31. Xu, Z., Yue, Q., Zhuang, Z., and Xiao, D., Flow injection amperometric determination of acetaminophen at a gold nanoparticle modified carbon paste electrode, Microchim. Acta, 2009, vol. 164, p. 387.
  32. Saraswathyamma, B., Grzybowska, I., Orlewska, C., Radecki, J., Dehaen, W., Kumar, K.G., and Radecka, H., Electroactive dipyrromethene–Cu(II) monolayers deposited onto gold electrodes for voltammetric determination of paracetamol, Electroanalysis, 2008, vol. 20, p. 2317.
  33. Goyal, R.N., Gupta, V.K., Oyama, M., and Bachheti, N., Differential pulse voltammetric determination of paracetamol at nano gold modified indium tin oxide electrode, Electrochem. Commun., 2005, vol. 7, p. 803.
  34. Fang, Y.Z., Long, D., and Ye, J., Study of acetaminophen by parallel incident spectroelectrochemistry, Anal. Chim. Acta, 1997, vol. 342, p. 13.
  35. Christie, I., Leeds, S., Baker, M., Keedy, F., and Vadgama, P., Direct electrochemical determination of paracetamol in plasma, Anal. Chim. Acta, 1993, vol. 272, p. 145.
  36. Atta, N.F. and El-Kady, M.F., Poly(3-methylthiophene)/palladium sub-micromodified sensor electrode. Part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen, Talanta, 2009, vol. 79, p. 639.
  37. Engin, C., Yilmaz, S., Saglikoglu, G., Yagmur, S., and Sadikoglu, M., Electroanalytical investigation of paracetamol on glassy carbon electrode by voltammetry, Int. J. Electrochem. Sci., 2015, vol. 10, p. 1916.
  38. Baranowska, I. and Koper, M., The preliminary studies of electrochemical behavior of paracetamol and its metabolites on glassy carbon electrode by voltammetric methods, Electroanalysis, 2009, vol. 21, p. 1194.
  39. Nematollahi, D., Shayani-Jam, H., Alimoradi, M., and Niroomand, S., Electrochemical oxidation of acetaminophen in aqueous solutions: kinetic evaluation of hydrolysis, hydroxylation and dimerization processes, Electrochim. Acta, 2009, vol. 54, p. 7407.
  40. Chu, Q.C., Jiang, L.M., An, X.H., and Ye, J.N., Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection, Anal. Chim. Acta, 2008, vol. 606, p. 246.
  41. Li, M.Q. and Jing, L.H., Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode, Electrochim. Acta, 2007, vol. 52, p. 3250.
  42. Gowda, J.I., Gunjiganvi, D.G., Sunagar, N.B., Bhata, M.N., and Nandibewoor, S.T., MWCNT–CTAB modified glassy carbon electrode as a sensor for the determination of paracetamol, RSC Adv., 2015, vol. 5, p. 49045.
  43. Zen, J.M. and Ting, Y.S., Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode, Anal. Chim. Acta, 1997, vol. 342, p. 175.
  44. Baranowska, I., Markowski, P., Gerle, A., and Baranowski, J., Determination of selected drugs in human urine by differential pulse voltammetry technique, Bioelectrochemistry, 2008, vol. 73, p. 5.
  45. Kachoosangi, R.T., Wildgoose, G.G., and Compton, R.G., Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode, Anal. Chim. Acta, 2008, vol. 618, p. 54.
  46. Norouzi, P., Dousty, F., Ganjali, M.R., and Daneshgar, P., Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: application in pharmaceutical formulation and biological fluid, Int. J. Electrochem. Sci., 2009, vol. 4, p. 1373.
  47. Beitollahi, H., Mohadesi, A., Mohammadi, S., and Akbari, A., Electrochemical behavior of a carbon paste electrode modified with 5-amino-3′,4′-dimethyl-biphenyl-2-ol/carbon nanotube and its application for simultaneous determination of isoproterenol, acetaminophen and N-acetylcysteine, Electrochim. Acta, 2012, vol. 68, p. 220.
  48. Teixeira, M.F.S., Marcolino, L.H., Fatibello, O., Moraes, F.C., and Nunes, R.S., Determination of analgesics (dipyrone and acetaminophen) in pharmaceutical preparations by cyclic voltammetry at a copper(II) hexacyanoferrate(III) modified carbon paste electrode, Curr. Anal. Chem., 2009, vol. 5, p. 303.
  49. EL Bouabi, Y., Farahi, A., Achak, M., Zeroual, M., Hnini, K., El Houssame, S., Bakasse, M., Bouzidi, A., and El Mhammedi, M.A., Electrocatalytic effect of fluoroapatite in reducing paracetamol at carbon paste electrode: analytical application, J. Taiwan Inst. Chem. E, 2016, vol. 66, p. 33.
  50. Nowicki, P. and Pietrzak, R., Effect of ammoxidation of activated carbons obtained from sub-bituminous coal on their NO2 sorption capacity under dry conditions, Chem. Eng. J., 2011, vol. 166, p. 1039.
  51. Guocheng L, Jiao, H., Liu, L., Hongwen, M., Qinfang, F., Limei, W., Mingquan, W., and Yihe, Z., The adsorption of phenol by lignite activated carbon, Chin. J. Chem. Eng., 2011, vol. 19, p. 380.
  52. Pietrzak, R., Wachowska, H., Nowicki, P., and Babeł, K., Preparation of modified active carbon from brown coal by ammoxidation, Fuel Process. Technol., 2007, vol. 88, p. 409.
  53. Wang, T., Tan, S., and Liang, C., Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation, Carbon, 2009, vol. 47, p. 1867.
  54. Pietrzak, R., Sawdust pellets from coniferous species as adsorbents for NO2 removal, Bioresour. Technol., 2010, vol. 101, p. 907.
  55. Poinern, G.E.J., Senanayake, G., Shah, N., Thi-Le, X.N., Parkinson, G.M., and Fawcett, D., Adsorption of the aurocyanide, AuCN2—complex on granular activated carbons derived from macadamia nut shells – a preliminary study, Miner. Eng., 2011, vol. 24, p. 1694.
  56. Nowicki, P., Pietrzak, R., and Wachowska, H., Sorption properties of active carbons obtained from walnut shells by chemical and physical activation, Catal. Today, 2010, vol. 150, p. 107.
  57. Bouchelta, C., Medjram, M.S., Bertrand, O., and Bellat, J.P., Preparation and characterization of activated carbon from date stones by physical activation with steam, J. Anal. Appl. Pyrolysis, 2008, vol. 82, p. 70.
  58. Haimour, N.M. and Emeish, S., Utilization of date stones for production of activated carbon using phosphoric acid, Waste Manage., 2006, vol. 26, p. 651.
  59. Angin, D., Production and characterization of activated carbon from sour cherry stones by zinc chloride, Fuel, 2014, vol. 115, p. 804.
  60. Marin, M.O., Gonzalez, C.F., Garcia, A.M., and Serrano, V.G., Preparation of activated carbon from cherry stones by chemical activation with ZnCl2, Appl. Surf. Sci., 2006, vol. 259, p. 5967.
  61. Hammani, H., Boumya, W., Laghrib, F., Farahi, A., Lahrich, S., Aboulkas, A., and El Mhammedi, M.A., Electro-catalytic effect of Al2O3 supported onto activated carbon in oxidizing phenol at graphite electrode, Mater. Today Chem., 2017, vol. 3, p. 27.
  62. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 101, p. 19.
  63. Sharp, M., Petersson, M., and Edstrom, K., Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface, J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 95, p. 123.
  64. Zhang, L. and Lin, X., Covalent modification of glassy carbon electrode with glutamic acid for simultaneous determination of uric acid and ascorbic acid, Analyst, 2001, vol. 126, p. 367.
  65. Bard, A.J. and Faulkner, L.R., Electrochemical Methods, Fundamentals and Applications, New York: Wiley, 2001.
  66. Galus, Z., Fundamentals of Electrochemical Analysis, New York: Ellis Horwood, 1976.
  67. Skoog, D.A., Holler, F.J., and Nieman, T.A., Principles of Instrumental Analysis, 5th ed., Philadelphia: Harcourt Brace, 1998.
  68. Wan, Q.J., Wang, X.W., Yu, F., Wang, X.X., and Yang, N.J., Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen, J. Appl. Electrochem., 2009, vol. 39, p. 1145.
  69. Sun, D. and Zhang, H.J., Electrochemical determination of acetaminophen using a glassy carbon electrode coated with a single-wall carbon nanotube-dicetyl phosphate film, Microchim. Acta, 2007, vol. 158, p. 131.
  70. Kang, X., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta, 2010, vol. 81, p. 754.
  71. Zidan, M., Tee, T.W., Abdullah, A.H., Zainal, Z., and Kheng, G.J., Electrochemical oxidation of paracetamol mediated by nanoparticles bismuth oxide modified glassy carbon electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 279.
  72. Hou, X., Shen, G., Meng, L., Zhu, L., and Guo, M., Multi walled carbon nanotubes modified glass carbon electrode and its electrocatalytic activity towards oxidation of paracetamol, Russ. J. Electrochem., 2011, vol. 47, p. 1262.