Increasing the Electrochemical Activity of the Pr1.95La0.05CuO4 Cathode by Laser Modification of the Electrode/Electrolyte Interface Profile

N. V. Lyskov N. V. Lyskov , M. Z. Galin M. Z. Galin , Ph. S. Napol’skii Ph. S. Napol’skii , G. N. Mazo G. N. Mazo
Russian Journal of Electrochemistry
Abstract / Full Text

The influence of the Ce0.9Gd0.1O1.95 solid electrolyte surface topology formed by laser processing on the electrochemical activity of the Pr1.95La0.05CuO4 cathode material in oxygen reduction reaction is studied. The ordered columnar structure of Ce0.9Gd0.1O1.95 with a depth of the relief profile of ~11–12 µm is shown to be the most preferable with respect to the achieving of higher electrochemical activity. A twofold decrease in the polarization resistance of the Pr1.95La0.05CuO4 cathode material from 0.87 Ω cm2 (the initial sample) to 0.40 Ω cm2 (the modified Ce0.9Gd0.1O1.95 surface) at a temperature of 700°C in air was observed upon the transition from the Ce0.9Gd0.1O1.95 solid electrolyte initial surface to the modified one. Based on the data obtained, the application of the laser processing for the formation of a preset topology of the electrode/electrolyte interface can be considered as an effective technological approach that allows increasing the electrochemical performance of solid oxide fuel cells.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    N. V. Lyskov & M. Z. Galin

  • Dubna State University, 141982, Dubna, Moscow oblast, Russia

    Ph. S. Napol’skii

  • Moscow State University, 119992, Moscow, Russia

    G. N. Mazo

  1. Cassidy, M., Trends in the processing and manufacture of solid oxide fuel cells, Wiley Interdiscip. Rev.: Energy Environ., 2017, vol. 6, p. e248.
  2. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, p. 1602.
  3. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Annu. Rev. Mater. Res., 2014, vol. 44, p. 365.
  4. Nédélec, R., Uhlenbruck, S., Sebold, D., Haanappel, V.A.C., Buchkremer, H.P., and Stöver, D., Dense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering, J. Power Sources, 2012, vol. 205, p. 157.
  5. Solovyev, A.A., Shipilova, A.V., Ionov, I.V., Kovalchuk, A.N., Rabotkin, S.V., and Oskirko, V.O., Magnetron-sputtered YSZ and CGO electrolytes for SOFC, J. Electron. Mater., 2016, vol. 45, p. 3921.
  6. Sønderby, S., Christensen, B.H., Almtoft, K.P., Nielsen, L.P., and Eklund, P., Industrial-scale high power impulse magnetron sputtering of yttria-stabilized zirconia on porous NiO/YSZ fuel cell anodes, Surf. Coat. Technol., 2015, vol. 281, p. 150.
  7. Hidalgo, H., Reguzina, E., Millon, E., Thomann, A.L., Mathias, J., Boulmer-Leborgne, C., Sauvage, T., and Brault, P., Yttria-stabilized zirconia thin films deposited by pulsed-laser deposition and magnetron sputtering, Surf. Coat. Technol., 2011, vol. 205, p. 4495.
  8. Connor, P.A., Yue, X., Savaniu, C.D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D.J., Maher, R.C., Cohen, L.F., Tomov, R.I., Glowacki, B.A., Kumar, R.V., and Irvine J.T.S., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 2018, vol. 8, p. 1800120.
  9. Sreedhar, I., Agarwal, B., Goyal, P., and Singh, S.A., Recent advances in material and performance aspects of solid oxide fuel cells, J. Electroanal. Chem., 2019, vol. 848, p. 113315.
  10. Esquirol, A., Brandon, N.P., Kilner, J.A., and Mogensen, M., Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs, J. Electrochem. Soc., 2004, vol. 151, p. A1847.
  11. Chen, D.J., Ran, R., Zhang, K., Wang, J., and Shao, Z.P., Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5 + δ cathode on samarium-doped ceria electrolyte, J. Power Sources, 2009, vol. 188, p. 96.
  12. Pelosato, R., Cordaro, G., Stucchi, D., Cristiani, C., and Dotelli, G., Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review, J. Power Sources, 2015, vol. 298, p. 46.
  13. Philippeau, B., Mauvy, F., Mazataud, C., Fourcade, S., and Grenier, J.C., Comparative study of electrochemical properties of mixed conducting Ln2NiO4 + δ (Ln = La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3 – δ as SOFC cathodes associated to Ce0.9Gd0.1O2 – δ, La0.8Sr0.2Ga0.8Mg0.2O3 – δ and La9SrSi6O26.5 electrolytes, Solid State Ionics, 2013, vol. 249, p. 17.
  14. Nomura, T., Nishimoto, S., Kameshima, Y., and Miyake, M., Electrode properties of doped Pr2NiO4-based oxide cathode for intermediate-temperature SOFCs, J. Ceram. Soc. Jpn., 2012, vol. 120, p. 534.
  15. Lyskov, N.V., Kaluzhskikh, M.S., Leonova, L.S., Mazo, G.N., Istomin, S.Ya., and Antipov, E.V., Electrochemical characterization of Pr2CuO4 cathode for IT-SOFC, Int. J. Hydrogen Energy, 2012, vol. 37, p. 18357.
  16. Kolchina, L.M., Lyskov, N.V., Kuznetsov, A.N., Kazakov, S.M., Galin, M.Z., Meledin, A., Abakumov, A.M., Bredikhin, S.I., Mazo, G.N., and Antipov, E.V., Evaluation of Ce-doped Pr2CuO4 for potential application as a cathode material for solid oxide fuel cells, RSC Adv., 2016, vol. 6, p. 101029.
  17. Kolchina, L.M., Lyskov, N.V., Kazakov, S.M., Mazo, G.N., and Antipov, E.V., Drastic change of electrical conductivity in Pr2CuO4 by isovalent La doping, RSC Adv., 2015, vol. 5, p. 91993.
  18. Wang, W.G. and Mogensen, M., High-performance lanthanum-ferrite-based cathode for SOFC, Solid State Ionics, 2005, vol. 176, p. 457.
  19. Dusastre, V. and Kilner, J.A., Optimization of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, 1999, vol. 126, p. 163.
  20. Murray, E.P., Sever, M.J., and Barnett, S.A., Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes, Solid State Ionics, 2002, vol. 148, p. 27.
  21. Leng, Y., Chan, S. H., and Liu, Q., Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte, Int. J. Hydrogen Energy, 2008, vol. 33, p. 3808.
  22. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells, J. Alloys Compd., 2014, vol. 605, p. 89.
  23. Lyskov, N.V., Kolchina, L.M., Galin, M.Z., and Mazo, G.N., Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells, Solid State Ionics, 2018, vol. 319, p. 156.
  24. Ding, D., Li, X., Lai, S.Y., Gerdes, K., and Liu, M., Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 2014, vol. 7, p. 552.
  25. Yoon, K. J., Biswas, M., Kim, H., Park, M., Hong, J., Kim, H., Son, J., Lee, J., Kim, B., and Lee, H., Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells, Nano Energy, 2017, vol. 36, p. 9.
  26. Cai, G., Zhang, Y., Dai, H., He, S., Ge, L., Chen, H., and Guo, L., Modification of electrode/electrolyte interface by laser micro-processing for solid oxide fuel cell, Mater. Lett., 2017, vol. 195, p. 232.
  27. Cebollero, J.A., Laguna-Bercero, M.A., Lahoz, R., Silva, J., Moreno, R., and Larrea, A., Optimization of laser-patterned YSZ–LSM composite cathode-electrolyte interfaces for solid oxide fuel cells, J. Eur. Ceram. Soc., 2019, vol. 39, p. 3466.
  28. Hayashi, H., Kanoh, M., Quan, C.J., Inaba, H., Wang, S., Dokiya, M., and Tagawa, H., Thermal expansion of Gd-doped ceria and reduced ceria, Solid State Ionics, 2000, vol. 132, p. 227.