Examples



mdbootstrap.com



 
Article
2017

Electrochemical oxidation of thrombin on carbon screen printed electrodes


E. V. SuprunE. V. Suprun, M. S. ZharkovaM. S. Zharkova, A. V. VeselovskyA. V. Veselovsky, A. I. ArchakovA. I. Archakov, V. V. ShumyantsevaV. V. Shumyantseva
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193517010141
Abstract / Full Text

The electrochemical oxidation of thrombin on the surface of carbon screen printed electrodes was studied. The electrochemical activity of thrombin was predicted, using bioinformation analysis, based on the data about the electrochemical properties of amino acids. The number of potentially electroactive amino acid residues, namely, tyrosine (Tyr), tryptophan (Trp), cysteine (Cys), histidine (His), methionine (Met), and cystine (Cys-Cys) located on the protein surface and orientated by their electroactive groups toward the electrode surface, i.e., accessible for electrochemical oxidation was calculated. The theoretical data were confirmed experimentally by cyclic and square-wave voltammetry. The available data on the protein structure allowed us to attribute the recorded electrochemical signals of thrombin oxidation to certain types of amino acid residue: the oxidation peak with a potential maximum at 0.7–0.8 V (vs. Ag/AgCl) was attributed to the oxidation of the Trp and Tyr residues; the wave in the range 1.0–1.2 V, to the oxidation of His; and the wave at 1.2–1.5 V, to the oxidation of Met and Cys-Cys. The electroanalysis based on the oxidation peak of the Tyr and Trp amino acid residues allowed to detect thrombin up to the concentration of 10–7 M. The suggested strategy for predicting the electrochemical activity can be used for investigating the properties of many other proteins and peptides and serve as a basis for their quantitative determination when developing various sensor and biosensor devices.

Author information
  • Institute of Biomedical Chemistry, Moscow, 119121, RussiaE. V. Suprun, M. S. Zharkova, A. V. Veselovsky, A. I. Archakov & V. V. Shumyantseva
References
  1. Brabec, V. and Mornstein, V., Biochim. Biophys. Acta, 1980, vol. 625, p. 43.
  2. Reynaud, J.A., Malfoy, B., and Bere, A., J. Electroanal. Chem., 1980, vol. 116, p. 595.
  3. Chiku, M., Ivandini, T.A., Kamiya, A., Fujishima, A., and Einaga, Y., J. Electroanal. Chem., 2008, vol. 612, p. 201.
  4. Somji, M., Dounin, V., Muench, S.B., Schulze, H., Bachmann, T.T., and Kerman, K., Bioelectrochemistry, 2012, vol. 88, p. 110.
  5. Enache, T.A. and Oliveira-Brett, A.M., Bioelectrochemistry, 2013, vol. 89, p. 11.
  6. Topal, B.D., Ozkan, S.A., and Uslu, B., J. Electroanal. Chem., 2014, vol. 719, p. 14.
  7. Suprun, E.V., Zharkova, M.S., Morozevich, G.E., Veselovsky, A.V., Shumyantseva, V.V., and Archakov, A.I., Electroanalysis, 2013, vol. 25, p. 2109.
  8. Brabec, V. and Mornstein, V., Biophys. Chem., 1980, vol. 12, p. 159.
  9. Reynaud, J.A., Malfoy, B., and Canesson, P., J. Electroanal. Chem., 1980, vol. 114, p. 195.
  10. Malfoy, B. and Reynaud, J.A., J. Electroanal. Chem., 1980, vol. 114, p. 213.
  11. Chiku, M., Nakamura, J., Fujishima, A., and Einaga, Y., Anal. Chem., 2008, vol. 80, p. 5783.
  12. Ostatna, V., Cernocka, H., Kurzatkowska, K., and Palecek, E., Anal. Chim. Acta, 2012, vol. 735, p. 31.
  13. Brabec, V. and Schindlerova, I., Bioelectrochem. Bioenerg., 1981, vol. 8, p. 451.
  14. Vestergaard, M., Kerman, K., Saito, M., Nagatani, N., Takamura, Y., and Tamiya, E., J. Am. Chem. Soc., 2005, vol. 127, p. 11892.
  15. Suprun, E.V., Zaryanov, N.V., Radko, S.P., Kulikova, A.A., Kozin, S.A., Makarov, A.A., Archakov, A.I., and Shumyantseva, V.V., Electrochim. Acta, 2015, vol. 179, p. 93.
  16. Suprun, E.V., Khmeleva, S.A., Radko, S.P., Archakov, A.I., and Shumyantseva, V.V., Electrochim. Acta, 2016, vol. 187, p. 677.
  17. Chikae, M., Fukuda, T., Kerman, K., Idegami, K., Miura, Y., and Tamiya, E., Bioelectrochemistry, 2008, vol. 74, p. 118.
  18. Suprun, E.V., Khmeleva, S.A., Radko, S.P., Kozin, S.A., Archakov, A.I., and Shumyantseva, V.V., Electrochem. Commun., 2016, vol. 65, p. 53.
  19. Kerman, K., Vestergaard, M., Chikae, M., Yamamura, S., and Tamiya, E., Electrochem. Commun., 2007, vol. 9, p. 976.
  20. Chiku, M., Horisawa, K., Doi, N., Yanagawa, H., and Einaga, Y., Biosens. Bioelectron., 2010, vol. 26, p. 235.
  21. Chang, J.-Y., Eur. J. Biochem., 1985, vol. 151, p. 217.
  22. Butkowski, R.J., Elion, J., Downing, M.R., and Manna, K.G., J. Biol. Chem., 1977, vol. 252, p. 4942.
  23. Macaya, R.F., Waldron, J.A., Beutel, B.A., Gao, H., Joeston, M.E., Yang, M., Patel, R., Bertelsen, A.H., and Cook, A.G., Biochemistry, 1995, vol. 34, p. 4478.
  24. Suprun, E.V., Shumyantseva, V.V., and Archakov, A.I., Electrochim. Acta, 2014, vol. 140, p. 72.
  25. Nguyen, N.T., Wrona, M.Z., and Dryhurst, G.J., Electroanal. Chem., 1986, vol. 199, p. 101.
  26. Enache, T.A. and Oliveira-Bret, A.M., Bioelectrochemistry, 2011, vol. 81, p. 46.
  27. Zheng, J., Feng, W., Lin, L., Zhang, F., Cheng, G., He, P., and Fang, Y., Biosens. Bioelectron., 2007, vol. 23, p. 341.