Article
2021

Application of a Modified Carbon Paste Electrode Using Core–Shell Magnetic Nanoparticle and Modifier for Simultaneous Determination of Norepinephrine, Acetaminophen and Tryptophan


 Sayed Zia Mohammadi Sayed Zia Mohammadi , Hadi Beitollahi Hadi Beitollahi , Maryam Askari Maryam Askari , Rahman Hosseinzadeh Rahman Hosseinzadeh
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521010079
Abstract / Full Text

The current study was conducted to synthesize 2-(4-ferrocenyl-[1,2,3]triazol-1-yl)-1-(naphthalen-2-yl) ethanone (2FTNE) as a mediator and magnetic core–shell manganese ferrite nanoparticles (CMNP) as a nanoparticle for construction of a modified carbon paste electrode (CPE). The electrochemical behavior of norepinephrine (NEP) was assessed using cyclic voltammetry and its determination was done by using differential pulse voltammetry (DPV) in the presence of tryptophan (TRP) and acetaminophen (AC). The 2FTNECMNP-modified CPE (2FTNECMNPPE) in comparison with bare CPE and CMNP modified CPE exhibited high electro-catalytic activity to the NEP oxidation. Linearity of the oxidation peak current with concentration of NEP was maintained between 0.075–60 μM (R2 = 0.9995). Limit of detection for NEP was obtained 0.016 μM on the basis of three times of standard deviation (3Sb) of blank. High selectivity, proper stability and suitable reproducibility are some advantages of the 2FTNECMNPPE that was successful in the measurement of NEP, AC and TRP in NEP ampoule, acetaminophen tablet and urine samples.

Author information
  • Department of Chemistry, Payame Noor University, Tehran, Iran

    Sayed Zia Mohammadi & Maryam Askari

  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    Hadi Beitollahi

  • Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

    Rahman Hosseinzadeh

References
  1. Voet, D. and Voet, J.G., Biochemistry, 2nd ed., New York: Wiley, 1995.
  2. Cole, S.W., Korin, Y.D., Fahey, J.L., and Zack, J.A., Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production, J. Immunol., 1998, vol. 161, p. 610.
  3. Carrera, V., Sabater, E., Vilanova, E., and Sogorb, M.A., A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures, J. Chromatogr. B, 2007, vol. 847, p. 88.
  4. Kuhlenbeck, D.L., O’Neill, T.P., Mack, C.E., Hoke, S.H., and Wehmeyer, K.R., Determination of norepinephrine in small volume plasma samples by stable-isotope dilution gas chromatography—tandem mass spectrometry with negative ion chemical ionization, J. Chromatogr. B, 2000, vol. 738, p. 319.
  5. Lin, Z., Wu, X., Lin, X., and Xie, Z., End-column chemiluminescence detection for pressurized capillary electrochromatographic analysis of norepinephrine and epinephrine, J. Chromatogr. A, 2007, vol. 1170, p. 118.
  6. Zhu, M., Huang, X.M., Li, J., and Shen, H.X., Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa, Anal. Chim. Acta, 1997, vol. 357, p. 261.
  7. Nalewajko, E., Wiszowata, A., and Kojło, A., Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection, J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1673.
  8. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., and Mirjalili, B.B.F., A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan, Biosens. Bioelectron., 2011, vol. 26, p. 2102.
  9. Kalimuthu, P. and Abraham John, S., Selective determination of norepinephrine in the presence of ascorbic and uric acids using an ultrathin polymer film modified electrode, Electrochim. Acta, 2011, vol. 56, p. 2428.
  10. Beitollahi, H. and Sheikhshoaie, I., Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode, J. Electroanal. Chem., 2011, vol. 611, p. 336.
  11. Chen, X., Zhang, G., Shi, L., Pan, S., Liu, W., and Pan, H., Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine, Mater. Sci. Eng. C, 2016, vol. 65, p. 80.
  12. Bui, M.P.N., Li, C.A., Han, K.N., Pham, X., and Seong, G.H., Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles, Sens. Actuators B, 2012, vol. 174, p. 318.
  13. Kumar, K.G. and Letha, R., Determination of paracetamol in pure form and in dosage forms using N,N-dibromo dimethylhydantoin, J. Pharm. Biomed. Anal., 1997, vol. 15, p. 1725.
  14. Filik, H., Aksu, D., Apak, R., Şener, I.S., and Kılıç, E., An optical fibre reflectance sensor for paminophenol determination based on tetrahydroxycalix[4]arene as sensing reagent, Sens. Actuators B, 2009, vol. 136, p. 105.
  15. Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., and Galera, R., Migration behavior and separation of acetaminophen and p-aminophenol in capillary zone electrophoresis: analysis of drugs based on acetaminophen, J. Pharm. Biomed. Anal., 2005, vol. 38, p. 87.
  16. Al-Ghannam, Sh.M., El-Brashy, A.M., and Al-Farhan, B.S., Fluorimetric determination of some thiol compounds in their dosage forms, Farmaco, 2002, vol. 57, p. 625.
  17. Wangfuengkanagul, N. and Chailapakul, O., Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system, J. Pharm. Biomed. Anal., 2002, vol. 28, p. 841.
  18. Nebot, C., Gibb, S.W., and Boyd, K.G., Quantification of human pharmaceuticals in water samples by high performance liquid chromatography—tandem mass spectrometry, Anal. Chim. Acta, 2007, vol. 598, p. 87.
  19. Simonneaux, V. and Ribelayga, C., Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters, Pharmacol. Rev., 2003, vol. 55, p. 325.
  20. Esfandiari Baghbamidi, S., Beitollahi, H., Mohammadi, S.Z., Tajik, S., Soltani-Nejad, S., and Soltani-Nejad, V., Nanostructure-based electrochemical sensor for the voltammetric determination of benserazide, uric acid, and folic acid, Chin. J. Catal., 2013, vol. 34, p. 1869.
  21. Beitollahi, H. and Mohammadi, S., Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode, Mater. Sci. Eng. C, 2013, vol. 33, p. 3214.
  22. Mohammadi, S.Z., Beitollahi, H., Khodaparast, B., and Hosseinzadeh, R., Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core–shell magnetic nanoparticles, Res. Chem. Intermed., 2019, vol. 45, p. 1117.
  23. Mohammadizadeh, N., Mohammadi, S.Z., and Kaykhaii, M., Carbon paste electrode modified with ZrO2 nanoparticles and ionic liquid for sensing of dopamine in the presence of uric acid, J. Anal. Chem., 2018, vol. 73, p. 685.
  24. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and Novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.
  25. Mohammadi, S.Z., Tajik, S., and Beitollahi, H., Screen printed carbon electrode modified with magnetic core shell manganese ferrite nanoparticles for electrochemical detection of amlodipine research on chemical intermediates, J. Serb. Chem. Soc., 2019, vol. 84, p. 1005.
  26. Mohammadi, S.Z., Beitollahi, H., and Fadaeian, H., Voltammetric determination of isoproterenol using a graphene oxide nano sheets paste electrode, J. Anal. Chem., 2018, vol. 73, p. 705.
  27. Mohammadi, S.Z., Beitollahi, H., Dehghan, Z., and Hosseinzadeh, R., Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core–shell magnetic nanoparticles in aqueous media, Appl. Organometal. Chem., 2018, vol. 32, article 4551.
  28. Tajik, S., Taher, M.A., and Beitollahi, H., First report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor, J. Electroanal. Chem., 2013, vol. 704, p. 137.
  29. Mohammadi, S.Z., Beitollahi, H., and Mousavi, M., Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets, Rus. J. Electrochem., 2017, vol. 53, p. 374.
  30. Mohammadi, S.Z., Beitollahi, H., Allahabadi, H., and Rohani, T., Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification, J. Electroanal. Chem., 2019, vol. 847, p. 113223.
  31. Mohammadi, S.Z., Beitollahi, H., Jasemi, M., and Akbari, A., Nanomolar determination of methyldopa in the presence of large amounts of hydrochlorothiazide using a carbon paste electrode modified with graphene oxide nanosheets and 3-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid, Electroanalysis, 2015, vol. 27, p. 2421.
  32. Mosazadeh, F., Mohammadi, S.Z., and Sarhadi, A.H., Electrochemical determination of acetaminophen by using modified screen printed carbon electrode, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1163.
  33. Mohammadi, S.Z., Beitollahi, H., and Hassanzadeh, M., Voltammetric determination of tryptophan using a carbon paste electrode modified with magnesium core–shell nanocomposite and ionic liquids, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 55.
  34. Mohammadi, S.Z., Sarhadi, A.H., and Mosazadeh, F., Screen-printed electrode modified with magnetic core–shell nanoparticles for detection of chlorpromazine, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 363.
  35. Beitollahi, H., Mohammadi, S.Z., and Tajik, S., Electrochemical behavior of morphine at the surface of magnetic core shell manganese ferrite nanoparticles modified screen printed electrode and its determination in real samples, Int. J. Nano Dimens., 2019, vol. 10, p. 304.
  36. Mohammadi, S.Z., Beitollahi, H., and Bani Asadi, E., Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode, Environ. Monit. Assess, 2015, vol. 187, p. 122.
  37. Molaakbari, E., Mostafavi, A., and Beitollahi, H., Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine, Sens Actuators B: Chem., 2015, vol. 208, p. 195.
  38. Mohammadi, S.Z., Beitollahi, H., and Mohammad Rahimi, N., Voltammetric determination of epinephrine and uric acid using modified graphene oxide nano sheets paste electrode, J. Anal. Chem., 2019, vol. 74, p. 345.
  39. Yan, J., Liu, S., Zhang, Z., He, G., Zhou, P., Liang, H., Tian, L., Zhou, X., and Jiang, H., Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles, Colloids Surf., B, 2013, vol. 111, p. 392.
  40. Mohammadi, S.Z. and Seyedi, A., Preconcentration of cadmium and copper ions on magnetic core–shell nanoparticles for determination by flame atomic absorption, Toxicol. Environ. Chem., 2016, vol. 98, p. 705.
  41. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.
  42. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., and Abdollahi-Alibeik, M., New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode, Sens. Actuators B, 2010, vol. 151, p. 243.
  43. Mazloum-Ardakani, M., Beitollahi, H., Sheikh-Mohseni, M.A., Naeimi, H., and Taghavinia, N., Novel nanostructure electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of high concentrations of acetaminophene and folic acid, Appl. Catal. A, 2010, vol. 378, p. 195.
  44. Salmanpour, S., Tavana, T., Pahlavan, A., Khalilzadeh, M.A., Ensafi, A.A., Karimi-Maleh, H., Beitollahi, H., Kowsari, E., and Zareye, D., Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode, Mater. Sci. Eng. C, 2012, vol. 32, p. 1912.
  45. Mahmoudi Moghaddam, H. and Beitollahi, H., Simultaneous voltammetric determination of norepinephrine and acetaminophen at the surface of a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6503.
  46. Chen, J., Huang, H., Zeng, Y., Tang, H., and Li, L., A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine, Biosens. Bioelectron., 2015, vol. 65, p. 366.