Sensitive Voltammetric Method for Rapid Determination of Sarcosine as a New Biomarker for Prostate Cancer Using a TiO2 Nanoparticle/Ionic Liquid Modified Carbon Paste Electrode

 Hengameh Bahrami Hengameh Bahrami , Mehdi Mousavi Mehdi Mousavi , Shahab Maghsoudi Shahab Maghsoudi
Russian Journal of Electrochemistry
Abstract / Full Text

Sarcosine has been identified as a key metabolite marker for monitoring and early diagnosis of metastatic prostate cancer (PCa), and it is detectable in the urine of patients. In the present study, a carbon past electrode modified with TiO2 nanoparticles in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid is proposed for the voltammetric determination of sarcosine in biological samples. Electrochemical impedance spectroscopy was used to study the charge transfer properties of the proposed electrode at the electrode–solution interface. Cyclic and differential pulse voltammetric methods were used to evaluate sarcosine electrochemical behaviour. Electrochemical oxidation of sarcosine on the new TiO2/ionic liquid carbon paste electrode (TiO2/IL/CPE) was carefully studied. The plot of oxidation peak current versus the concentration of sarcosine consists of two separate linear portions. The first part is for 0.1 to 1 mM (direct proportion) and the second one is for 1.0 to 5.0 mM of sarcosine (linear portion). The detection limit was 0.08 mM (3σ) in phosphate buffer (pH 11.5). The measurement and fabrication reproducibilities of the modified sensor were 1.7 and 3.46% for 0.6 mM sarcosine, respectively. The proposed method was successfully applied for the determination of sarcosine in a spiked real sample.

Author information
  • Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman, Iran

    Hengameh Bahrami, Mehdi Mousavi & Shahab Maghsoudi

  1. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D., Global cancer statistics, Cancer J. Clin., 2011, vol. 61, p. 69.
  2. Leman, E.S. and Getzenberg, R.H., Biomarkers for prostate cancer, J. Cell. Biochem., 2009, vol. 108, p. 3.
  3. Sreekumar, A., Poisson, L.M., Rajendiran, T.M., Khan, A.P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R.J., Li, Y., Nyati, M.K., Ahsan, A., Kalyana Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G.S., Ghosh, D., Pennathur, S., Alexander, D.C., Berger, A., Shuster, J.R., Wei, J.T., Varambally, S., Beecher, C., and Chinnaiyan, A.M., Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression, Nature, 2009, vol. 457, p. 910.
  4. Lucarelli, G., Fanelli, M., Larocca, A.M.V., Germinario, C.A., Rutigliano, M., Vavallo, A., Selvaggi, F.P., Bettocchi, C., Battaglia, M., and Ditonno, P., Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/mL, Prostate, 2012, vol. 72, p. 1611.
  5. Jiang, Y., Cheng, X., Wang, C., and Ma, Y., Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry, Anal. Chem., 2010, vol. 82, p. 9022.
  6. Jentzmik, F., Stephan, C., Miller, K., Schrader, M., Erbersdobler, A., Kristiansen, G., Lein, M., and Jung, K., Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours, Eur. Urol., 2010, vol. 58, p. 12.
  7. Hashemi-Moghaddam, H. and Hagigatgoo, M., Nonderivatized sarcosine analysis by gas chromatography after solid-phase microextraction by newly synthesized monolithic molecularly imprinted polymer, Chromatographia, 2015, vol. 78, p, 1263.
  8. Cernei, N., Zitka, O., Ryvolova, M., Adam, V., Masarik, M., Hubalek, J., and Kizek, R., Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker, Int. J. Electrochem. Sci., 2012, vol. 7, p. 4286.
  9. Moein, M.M., Abdel Rehim, A., and Abdel Rehim, M., On-line determination of sarcosine in biological fluids utilizing dummy molecularly imprinted polymers in microextraction by packed sorbent, J. Sep. Sci., 2015, vol. 38, p. 788.
  10. Pundir, C.S., Chauhan, N., Kumari, G., and Vandana, C., Immobilization of Arthrobacter sarcosine oxidase onto alkylamine and arylamine glass and its application in serum sarcosine determination, Indian J. Biotechnol., 2011, vol. 10, p. 219.
  11. Lan, J., Xu, W., Wan, Q., Zhang, X., Lin, J., Chen, J., and Chen, J., Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles, Anal. Chim. Acta, 2014, vol. 825, p. 63.
  12. Bellon, G., Lundy, A.M., Malgras, A., and Borel, J.P., Fluorometric evaluation of sarcosine in urine and serum, J. Chromatogr. B: Biomed. Sci. Appl., 1984, vol. 311, p. 405.
  13. Rebelo, T.S.C.R., Pereira, C.M., Sales, M.G.F., Noronha, J.P., Costa Rodrigues, J., Silva, F., and Fernandes, M.H., Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples, Anal. Chim. Acta, 2014, vol. 850, p. 26.
  14. Nguy, T.P., Van Phi, T., Tram, D.T.N., Eersels, K., Wagner, P., and Lien, T.T.N., Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors, Sens. Actuators, B: Chem., 2017, vol. 246, p. 461.
  15. Valenti, G., Rampazzo, E., Biavardi, E., Villani, E., Fracasso, G., Marcaccio, M., Bertani, F., Ramarli, D., Dalcanale, E., Paolucci, F., and Prodi, L., An electrochemiluminescence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer, Faraday Discuss., 2015, vol. 185, p. 299.
  16. Švancara, I., Vytřas, K., Kalcher, K., Walcarius, A., and Wang, J., Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis, Electroanalysis, 2009, vol. 21, p. 7.
  17. Razmi, E.D., Beitollahi, H., Mahani, M.T., and Anjomshoa, M., TiO2/Fe3O4/multiwalled carbon nanotubes nanocomposite as sensing platform for simultaneous determination of morphine and diclofenac at a carbon paste electrode, Russ. J. Electrochem., 2018, vol. 54, p. 1132.
  18. Xu, M., Ma, M., and Ma, Y., Electrochemical determination of tryptophan based on silicon dioxide nanopartilces modified carbon paste electrode, Russ. J. Electrochem., 2012, vol. 48, p. 489.
  19. Hasanpour, F., Nekoeinia, M., and Rashidi, H., Application of pyrogallol azo derivative as a mediator for simultaneous voltammetric sensing of ascorbic acid, epinephrine, acetaminophen, and tryptophan, IEEE Sens. J., 2016, vol. 16, p. 7992.
  20. Wang, K.F., Jian, F.F., and Zhuang, R., A new ionic liquid comprising lanthanum (III) bulk-modified carbon paste electrode: preparation, electrochemistry and electrocatalysis, J. Chem. Soc. Dalt. Trans., 2009, no. 23, p. 4532.
  21. Moreira, F., de Andrade Maranhão, T., and Spinelli, A., Carbon paste electrode modified with Fe3O4 nanoparticles and BMI.PF6 ionic liquid for determination of estrone by square-wave voltammetry, J. Solid State Electrochem., 2018, vol. 22, p. 1303.
  22. Salih, F.E., Oularbi, L., Halim, E., Elbasri, M., Ouarzane, A., and El Rhazi, M., Conducting polymer/ionic liquid composite modified carbon paste electrode for the determination of carbaryl in real samples, Electroanalysis, 2018, vol. 30, p. 1855.
  23. Veera Manohara Reddy, Y., Sravani, B., Agarwal, S., Gupta, V.K., and Madhavi, G., Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, J. Electroanal. Chem., 2018, vol. 820, p. 168.
  24. Shim, K., Wang, Z.L., Mou, T.H., Bando, Y., Alshehri, A.A., Kim, J., Hossain, M.S.A., Yamauchi, Y., and Kim, J.H., Synthesis of palladium-nanoparticle-embedded N-doped carbon fibers for electrochemical sensing, Chempluschem, 2018, vol. 83, p. 401.
  25. Kempahanumakkagari, S., Deep, A., Kim, K.H., Kumar Kailasa, S., and Yoon, H.O., Nanomaterial-based electrochemical sensors for arsenic – a review, Biosens. Bioelectron., 2017, vol. 95, p. 106.
  26. Baghayeri, M., Amiri, A., Maleki, B., Alizadeh, Z., and Reiser, O., A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe, Sens. Actuators, B: Chem., 2018, vol. 273, p. 1442.
  27. Alavi Tabari, S.A.R., Khalilzadeh, M.A., and Karimi-Maleh, H., Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle, J. Electroanal. Chem., 2018, vol. 811, p. 84.
  28. Chen, X., Guo, Z., Tang, Y., Shen, Y., and Miao, P., A highly sensitive gold nanoparticle-based electrochemical aptasensor for theophylline detection, Anal. Chim. Acta, 2018, vol. 999, p. 54.
  29. Naoi, M. and Yagi, K., Oxidation of sarcosine and N‑alkyl derivatives of glycine by d-amino-acid oxidase, Biochim. Biophys. Acta, 1976, vol. 438, no. 1, p. 61.
  30. Aikens, D.A., Electrochemical methods, fundamentals and applications, J. Chem. Educ., 2009, vol. 60, p. A25.
  31. Pinkerton, T.C. and Heineman, W.R., The electrochemical reduction of pertechnetate in aqueous hydroxyethylidene diphosphonate media, J. Electroanal. Chem. Interfacial Electrochem., 1983, vol. 158, p. 323.
  32. Van Wazer, J.R., Electrochemistry in biology and medicine, J. Am. Chem. Soc., 1955, vol. 77, p. 6090.
  33. Handler, P., Bernheim, M.L.C., and Klein, J.R., The oxidative demethylation of sarcosine to glycine‏, J. Biol. Chem., 1941, vol. 138, p. 211.
  34. Marangoni, D.G., Smith, R.S., and Roscoe, S.G., Surface electrochemistry of the oxidation of glycine at Pt, Can. J. Chem., 1989, vol. 67, p. 921.
  35. Bockris, J.O.M., Reddy, A.K.N., and Gamboa Aldeco, M., Modern Electrochemistry, vol. 2A: Fundamentals of Electrodics, 2nd ed., Kluwer Acad., 2000.