Article
2021

Multi-Component Platinum-Containing Electrocatalysts in the Reactions of Oxygen Reduction and Methanol Oxidation


V. S. Menshchikov V. S. Menshchikov , S. V. Belenov S. V. Belenov , I. N. Novomlinsky I. N. Novomlinsky , A. Yu. Nikulin A. Yu. Nikulin , V. E. Guterman V. E. Guterman
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521060070
Abstract / Full Text

Catalysts containing bimetallic PtCu-nanoparticles deposited onto carbonaceous and composite SnO2/C supports are prepared by liquid-phase borohydride synthesis. The composition and structure of the synthesized materials, their catalytic activity in the reactions of oxygen electroreduction and methanol electrooxidation, as well as corrosion and morphological stability are investigated. The platinum doping with copper atoms is found to increase the materials’ catalytic activity and stability in comparison with Pt/C, regardless of the type of support used. In addition, the multicomponent PtCu/(SnO2/C) catalyst exhibits the highest tolerance to intermediate products of methanol electrooxidation.

Author information
  • Southern Federal University, Rostov-on-Don, Russia

    V. S. Menshchikov, S. V. Belenov, I. N. Novomlinsky, A. Yu. Nikulin & V. E. Guterman

References
  1. Wee, J.-H., A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries, J. Power Sources, 2007, vol. 173, p. 424.
  2. Brouzgou, A., Podias, A., and Tsiakaras P., PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review, J. Appl. Electrochem., 2013, vol. 43, p. 119.
  3. Burhan, H., Cellat, K., Yilmaz, G., and Sen, F., Chapter 3 Direct methanol fuel cells (DMFCs), in: Direct Liquid Fuel Cells: Fundamentals, Advances Future, 2021. p. 71.
  4. Tarasevich, M.R. and Kuzov, A.V., Direct alcohol fuel cells, Al’ternat. Energetika Ekologiya (in Russian), 2010, no. 7(87), p. 86.
  5. Meital, G., Menkin, S., and Peled, E., High power direct methanol fuel cell for mobility and portable applications, Int. J. Hydrogen Energy, 2019, vol. 44, p. 3138.
  6. Pinto, A.M.F.R., Oliveira, V.S., and Falcao, D.S.C., Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances 1st Edition, 2018. p. 287.
  7. Kaur, B., Srivastava, R., and Satpati, B., Highly efficient CeO2 decorated nano-ZSM-5 catalyst for electrochemical oxidation of methanol, ACS Catal., 2016, vol. 6, p. 2654.
  8. Liu, Y., Li, D., Stamenkovic, V.R., Soled, S., Henao, J.D., and Sun, S., Synthesis of Pt3Sn alloy nanoparticles and their catalysis for electro-oxidation of CO and methanol, ACS Catal., 2011, vol. 1, p. 1719.
  9. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell, Cat. Today, 1997, vol. 38, p. 445.
  10. Watanabe, M. and Motoo, S., Electrocatalysis by adatoms. Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms, J. Electroanal. Chem., 1975, vol. 60, p. 267.
  11. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairns, E.J., Methanol electrooxidation on well-characterized Pt–Ru alloys, J. Phys. Chem., 1993, vol. 97, p. 12029.
  12. Markovic, N., Gasteiger, H.A., Ross, P.N., Jiang, X., Villegas, I., and Weaver, M.J., Electro-oxidation mechanisms of methanol and formic acid on Pt–Ru alloy surfaces, Electrochim. Acta, 1995, vol. 40, p. 91.
  13. Tong, Y.Y., Kim, H.S., Babu, P.K., Waszczuk, P., Wieckowski, A., and Oldfield, E., An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst, J. Am. Chem. Soc., 2002, vol. 124, p. 468.
  14. Pinheiro, A.L.N., Zei, M.S., and Ertl, G., Electro-oxidation of carbon-monoxide and methanol on bare and Pt-modified Ru (1010) electrodes, PhysChemChemPhys., 2005, vol. 7, p. 1300.
  15. Yang, H., Dai, L., Xu, D., Fang, J., and Zou, S., Electrooxidation of methanol and formic acid on PtCu nanoparticles, Electrochim. Acta, 2010, vol. 55, p. 8000.
  16. Li, X., Zhou, Y., Du Y., Xu, J., Wang, W., Chen, Z., and Cao, J., PtCu nanoframes as ultra-high performance electrocatalysts for methanol oxidation, Int. J. Hydrogen Energy, 2019, vol. 44, p. 18050.
  17. Santasalo-Aarnio, A., Borghei, M., Anoshkin, I.V., Nasibulin, A.G., Kauppinen, E.I., Ruiz, V., and Kallio, T., Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell, Int. J. Hydrogen Energy, 2012, vol. 37, p. 3415.
  18. Çögenli, M. S. and Yurtcan, A. B., Catalytic activity, stability and impedance behavior of PtRu/C, PtPd/C and PtSn/C bimetallic catalysts toward methanol and formic acid oxidation. Int. J. Hydrogen Energy, 2018, vol. 43, p. 10698.
  19. Stamenković, V., Schmidt, T.J., Ross, P.N., and Marković, N.M., Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces, J. Electroanal. Chem., 2003, vols. 554–555, p. 191.
  20. Guofeng, W., van Hove, M.A., Ross, P.N., and Baskes, M.I., Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo), Prog. Surf. Sci., 2005, vol. 79, p. 28.
  21. Noel, K. and Xin, W., Pt-shell-Au-core/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions, Electrochem. Commun., 2008, vol. 10, p. 12.
  22. Hua, L.M. and Shan, D.J., Kinetics of oxygen reduction reaction on Co rich core–Pt rich shell/C electrocatalysts, J. Power Sources, 2009, vol. 188, p. 353.
  23. Chen, L-N., Hou, K.-P., Liu, Y.-S., Qi, Z., Zheng, Q., Lu, Y.-H., Chen, J.-Y., Chen, J.-L., Pao, C.-W., Wang, S.-B., Li, Y.-B., Xie, S.-H., Liu, F-D., Prendergast, D., Klebanoff, L.E., Stavila, V., Allendorf, M.D., Guo, J., Zheng, L-S., Su, J., and Somorjai, G.A., Efficient Hydrogen Production from Methanol Using A Single-Site Pt1/CeO2 Catalyst, J. Amer. Chem. Soc., 2019, vol. 141, p. 17995.
  24. Papavasiliou, J., Paxinou, A., Słowik, G., Neophytides, S., and Avgouropoulos, G., Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications, Catalysts, 2018, vol. 8, p. 544.
  25. Kuriganova, A., Chernysheva, D., Faddeev, N., Leontyev, I., Smirnova, N., and Dobrovolskii, Y., PAC Synthesis and Comparison of Catalysts for Direct Ethanol Fuel Cells, Processes, 2020, vol. 8, p. 712.
  26. Zhang, K., Feng, C., He, B., Dong, H., Dai, W., Lu, H., and Zhang, X., An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction, J. Electroanal. Chem., 2016, vol. 781, p. 198.
  27. Zhang, N., Zhang, S., Du, C., Wang, Z., Shao, Y., Kong, F., Lin, Y., and Yin, G., Pt/Tin Oxide/Carbon Nanocomposites as Promising Oxygen Reduction Electrocatalyst with Improved Stability and Activity, Electrochim. Acta, 2014, vol. 117, p. 413.
  28. Huang, S.-Y., Ganesan, P., and Popov, B.N., Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell, Appl. Catal. B: Environmental, 2011, vol. 102, p. 74.
  29. Akalework, N.G., Pan, C.-J., Su, W.-N., Rick, J., Tsai, M.-C., Lee, J.- F., Lin, J.-M., Tsai, L.-D., and Hwang, B.-J., Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs, J. Mater. Chem., 2012, vol. 22, p. 20977.
  30. Esfahani, R.A.M., Videla, A.H.M., Vankova, S., and Specchia, S., Stable and methanol tolerant Pt/TiOx–C electrocatalysts for the oxygen reduction reaction, Int. J. Hydrogen Energy, 2015, vol. 40, p. 14529.
  31. Ando, F., Tanabe, T., Gunji, T., Tsuda, T., Kaneko, S., Takeda, T., Ohsaka, T., and Matsumoto, F., Improvement of ORR Activity and Durability of Pt Electrocatalyst Nanoparticles Anchored on TiO2/Cup-Stacked Carbon Nanotube in Acidic Aqueous Media, Electrochim. Acta, 2017, vol. 232, p. 404.
  32. Kuriganova, A.B., Leontyev, I.N., Alexandrin, A.S., Maslova, O.A., Rakhmatullin, A.I., and Smirnova, N.V., Electrochemically synthesized Pt/TiO2–C catalysts for direct methanol fuel cell applications, Mendeleev Commun., 2017, vol. 27, p. 67.
  33. Wang, J., Xu, M., Zhao, J., Fang, H., Huang, Q., Xiao, W., Li, T., and Wang, D., Anchoring ultrafine Pt electrocatalysts on TiO2–C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction, Appl. Catal. B: Environmental, 2018, vol. 237, p. 228.
  34. De Oliveira, M.B., Profeti, L.P.R., and Olivi, P., Electrooxidation of methanol on PtMyOx (M = Sn, Mo, Os or W) electrodes, Electrochem. Commun., 2005, vol. 7, p. 703.
  35. Rousseau, S., Coutanceau, C., Lamy, C., and Léger, J.-M., Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes, J. Power Sources, 2006, vol. 158, p. 18.
  36. Cui, X., Cui, F., He, Q., Guo, L., Ruan, M., and Shi, J., Graphitized mesoporous carbon supported Pt–SnO2 nanoparticles as a catalyst for methanol oxidation, Fuel, 2010, vol. 89, p. 372.
  37. Wang, X., Hu, X., Huang, J., Zhang, W., Ji, W., Hui, Y., and Yao, X., Electrospinning synthesis of porous carbon fiber supported Pt-SnO2 anode catalyst for direct ethanol fuel cell, Solid State Sci., 2019, vol. 94, p. 64.
  38. Menshchikov, V.S., Alekseenko, A.A., Guterman, V.E., Nechitailov, A., Glebova, N.B., Tomasov, A.A., Spiridonova, O.A., Belenov, S.V., Zelenina, N.K., and Safronenko, O.I., Effective Platinum–Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell, Nanomaterials, 2020, vol. 10, p. 742.
  39. Guterman, V.E., Lastovina, T.A., Belenov, S.V., Tabachkova, N.Yu., Vlasenko, V.G., Khodos, I.I., and Balakshina, E.N., PtM/C (M = Ni, Cu, or Ag) electrocatalysts: effects of alloying components on morphology and electrochemically active surface areas, J. Solid State Electrochem., 2013, vol. 18, p. 1307.
  40. Novomlinskiy, I.N., Guterman, V.E., Danilenko, M.V., and Volochaev, V.A., Platinum Electrocatalysts Deposited onto Composite Carbon Black–Metal Oxide Support, Russ. J. Electrochem., 2019, vol. 55, p. 690.
  41. Guterman, V.E., Novomlinskij, I.N., Skibina, L.M., and Mauer, D.K., Method for obtaining nanostructural material of tin oxide on basis of carbon, Pat. 2656914 (Russia), 2017.
  42. Langford, J.I. and Wilson, A.J.C., Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size, J. Appl. Crystallography, 1978, vol. 11, p. 102.
  43. Borup, R., Meyers, J., Pivovar, B., Kim, Yu.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., and Wood, D., More scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.
  44. Pavlov, V.I., Gerasimova, E.V., Zolotukhina, E.V., Dobrovolsky, Y.A., Don, G.M., and Yaroslavtsev, A.B., Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells, Nanotech. Russia, 2016, vol. 11, p. 743.
  45. Zhang, Y., Chen, S., Wang, Y., Ding, W., Wu, R., Li, L., Qi, X., and Wei, Z., Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test, J. Power Sources, 2015, vol. 273, p. 62.
  46. Ohma, A., Shinohara, K., Iiyama, A., Yoshida, T., and Daimaru, A., Fuel cells by FCCJ membrane, catalyst, MEA WG membrane and catalyst performance targets for automotive, ECS Trans., 2011, vol. 41, p. 775.
  47. Capelo, A., Esteves, M.A., Sa, A.I., Silva, R.A., Cangueiro, L., Almeida, A., Vilar, R., and Rangel, C.M., Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support, Int. J. Hydrogen Energy, 2016, vol. 41, p. 12962.
  48. Hasche, F., Oezaslan, M., and Strasser, P., Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts, ChemCatChem., 2011, vol. 3, p. 1805.
  49. Park, Yu.-Ch., Kakinuma, K., Uchida, M., Uchida, H., and Watanabe, M., Deleterious effects of interim cyclic voltammetry on Pt/carbon black catalyst degradation during start-up/shutdown cycling evaluation, Electrochim. Acta, 2014, vol. 123, p. 84.
  50. Riese, A., Banham, D., Ye, S., and Sun, X., Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports, J. Electrochem. Soc., 2015, vol. 162, p. F783.
  51. Moguchikh, E.A., Alekseenko, A.A., Guterman, V.E., Novikovsky, N.M., Tabachkova, N.Yu., and Menshchikov, V.S., Effect of the composition and structure of Pt(Cu)/C electrocatalysts on their stability under different stress test conditions, Russ. J. Electrochem., 2018, vol. 54, p. 979.
  52. Alekseenko, A.A., Moguchikh, E.A., Safronenko, O.I., and Guterman, V.E., Durability of de-alloyed PtCu/C electrocatalysts, Int. J. Hydrogen Energy, 2018, vol. 43, p. 22885.
  53. Oezaslan, M. and Strasser, P., Activity of dealloyed PtCo and PtCu nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell, J. Power Sources, 2011, vol. 196, p. 5240.
  54. Oezaslan, M., Hasche, F., and Strasser, P., PtCu3, PtCu and Pt3Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media, J. Electrochem. Soc., 2012, vol. 159, p. 444.
  55. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Rui, Lin, Tabachkova, N.Yu., and Safronenko, O.I., Activity and Stability of Pt/C and Pt–Cu/C Electrocatalysts, Electrocatalysis, 2018, vol. 9, p. 550.
  56. Van der Vliet, Dr. D.F., Wang, D.F., Li, C., Paulikas, D., Greeley, A.P., Rankin, J., R.B., Strmcnik, D., Tripkovic, D., Markovic, N.M., and Stamenkovic, V.R., Unique Electrochemical Adsorption Properties of Pt-Skin Surfaces, Angew. Chem. Int. Ed., 2012, vol. 51, p. 3139.
  57. Rudi, S., Cui, C., Gan, L., and Strasser, P., Comparative Study of the Electrocatalytically Active Surface Areas (ECSAs) of Pt Alloy Nanoparticles Evaluated by Hupd and CO-stripping voltammetry, Electrocatalysis, 2014, vol. 5, p. 408.
  58. Ghavidel, Z.M.R., Monteverde Videla, A.H.A., Specchia, S., and Easton, E.B., The relationship between the structure and ethanol oxidation activity of Pt–Cu/C alloy catalysts, Electrochim. Acta, 2017, vol. 230, p. 58.
  59. Maillard, F., Schreier, S., Hanzlik, M., Savinova, E.R., Weinkauf, S., and Stimming, U., Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation, PhysChemChemPhys., 2005, vol. 7, p. 385.
  60. Liu, C., Zhang, L., Sun, L., Wang, W., and Chen, Z., Enhanced electrocatalytic activity of PtCu bimetallic nanoparticles on CeO2/carbon nanotubes for methanol electro-oxidation, Int. J. Hydrogen Energy, 2020, vol. 45, p. 8558.
  61. Wang, X., Wang, W., Qi, Z., Zhao, C., Ji, H., and Zhang, Z., Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites, J. Alloys Compounds, 2010, vol. 508, p. 463.