Examples



mdbootstrap.com



 
Article
2017

Rotating ring-disk voltammetry: Diagnosis of catalytic activity of metallic copper catalysts toward CO2 electroreduction


A. WadasA. Wadas, I. A. RutkowskaI. A. Rutkowska, M. BartelM. Bartel, S. ZoladekS. Zoladek, K. RajeshwarK. Rajeshwar, P. J. KuleszaP. J. Kulesza
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193517100135
Abstract / Full Text

Using the rotating ring (platinum)—disk (glassy carbon) electrode methodology, electrocatalytic activity of the microstructured copper centers (imbedded within the polyvinylpyrrolidone polymer matrix and deposited onto the glassy carbon disk electrode) has been monitored during electroreduction of carbon dioxide both in acid (HClO4) and neutral (KHCO3) media as well as diagnosed (at Pt ring) with respect to formation of the electroactive products. Combination of the stripping-type and rotating ring-disk voltammetric approaches has led to the observation that, regardless the overlapping reduction phenomena, the reduction of carbon dioxide at copper catalyst is, indeed, operative and coexists with hydrogen evolution reaction. Using the fundamental concepts of surface electrochemistry and analytical voltammetry, the reaction products (thrown onto the platinum ring electrode) could be considered and identified as adsorbates (on Pt) under conditions of the stripping-type oxidation experiment. Judging from the potentials at which the stripping voltammetric peaks appear in neutral CO2-saturated KHCO3 (pH 6.8), formic acid or carbon monoxide seem to be the most likely reaction products or intermediates. The proposed methodology also permits correlation between the CO2 electroreduction products and the potentials applied to the disk electrode. By performing the comparative stripping-type voltammetric experiments in acid medium (HClO4 at pH 1) with the adsorbates of formic acid, ethanol and acetaldehyde (on Pt ring), it can be rationalized that, although C2H5OH or CH3CHO are very likely CO2-reduction electroactive products, formation of some HCOOH, CH3OH or even CO cannot be excluded.

Author information
  • Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093, Warsaw, PolandA. Wadas, I. A. Rutkowska, M. Bartel, S. Zoladek & P. J. Kulesza
  • Department of Chemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, USAK. Rajeshwar
References
  1. Dubois, D.L., in Encyclopedia of Electrochemistry, Bard, A.J. and Stratmann, M., Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, p. 202.
  2. Frese, J.K.W., in Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, Sullivan, B.P., Krist, K., and Guard, H.E., Eds., Amsterdam: Elsevier, 1993, p. 145.
  3. Halmann, M.M. and Steinberg, M., in Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, Halmann, M.M. and Steinberg, M., Eds., Boca Raton, FL: Lewis Publishers, 1999, p. 411.
  4. Hori, Y., in Modern Aspects of Electrochemistry, Vayenas, C.G., White, R.E., and Gamboa-Aldeco, M.E., Eds., New York: Springer, 2008, vol. 42, p. 89.
  5. Taniguchi, I., in Modern Aspects of Electrochemistry, Bockris, J.M., Conway, B.E., and White, R.E., New York: Springer, 1989, vol. 20, p. 327.
  6. Bian, Z.-Y., Sumi, K., Furue, M., Sato, S., Koike, K., and Ishitani, O., A novel tripodal ligand, tris[(4'-methyl-2,2'-bipyridyl-4-yl)-methyl]carbinol and its trinuclear RuII/ReI mixed–metal complexes: Synthesis, emission properties, and photocatalytic CO2 reduction, Inorg. Chem., 2008, vol. 47, p. 10801.
  7. Tanaka, K. and Ooyama, D., Multi-electron reduction of CO2 via Ru–CO2,–C(O)OH,–CO,–CHO, and ?CH2OH species, Coord. Chem. Rev., 2002. vol. 226. p. 211.
  8. Toyohara, K., Nagao, H., Mizukawa, T., and Tanaka, K., Ruthenium formyl complexes as the branch point in two-and multi-electron reductions of CO2, Inorg. Chem., 1995, vol. 34, p. 5399.
  9. Hori, Y., Murata, A., and Takahashi, R., Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, J. Chem. Soc., Faraday Trans. 1, 1989, vol. 85, p. 2309.
  10. Hoshi, N., Sato, E., and Hori, Y., Electrochemical reduction of carbon dioxide on kinked stepped surfaces of platinum inside the stereographic triangle, J. Electroanal. Chem., 2003, vol. 540, p. 105.
  11. Peterson, A.A., Abild-Pedersen, F., Studt, F., Prossmeisl, J., and Nørskov, J.K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energy Environ. Sci., 2010, vol. 3, p. 1311.
  12. Finn, C., Schnittger, S., Yellowlees, L.J., and Love, J.B., Molecular approaches to the electrochemical reduction of carbon dioxide, Chem. Commun., 2012, vol. 48, p. 1392.
  13. Stalder, C.J., Chao, S., Summers, D.P., and Wrinhton, M.S., Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen, J. Am. Chem. Soc., 1983, vol. 105, p. 6318.
  14. Dall’Antonina, L.H., Tremiliosi-Filho, G., and Jerkiewicz, G., Influence of temperature on the growth of surface oxides on palladium electrodes, J. Electroanal. Chem., 2001, vol. 502, p. 72.
  15. Kibler, L.A., El-Aziz, A.M., Hoyer, R., and Kolb, D.M., Tuning reaction rates by lateral strain in a palladium monolayer, Angew. Chem. Int. Ed., 2005, vol. 44, p. 2080.
  16. Grden, M., Lukaszewski, M., Jerkiewicz, G., and Czerwinski, A., Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption, Electrochim. Acta, 2008, vol. 53, p. 7585.
  17. Chen, Y. and Kanan, M.W., Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts, J. Am. Chem. Soc., 2012, vol. 134, p. 1986.
  18. Gattrell, M., Gupta, N., and Co, A., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper, J. Electroanal. Chem., 2006, vol. 594, p. 1.
  19. Dewulf, D.W., Jin, T., and Bard, A.J., Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions, J. Electrochem. Soc., 1989, vol. 136, p. 1686.
  20. Schouten, K.J.P., Kwon, Y., Van der Ham, C.J.M., Qin, Z., and Koper, M.T.M., A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes, Chem. Sci., 2011, vol. 2, p. 1902.
  21. Peterson, A.A., Abild-Pedersen, F., Studt, F., Rossmeisl, J., and Nørskov, J.K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energy Environ. Sci., 2010, vol. 3, p. 1311.
  22. Durand, W.J., Peterson, A.A., Studt, F., Abild-Pedersen, F., and Nørskov, J.K., Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces, Surf. Sci., 2011, vol. 605, p. 1354.
  23. Li, Ch.W. and Kanan, M.W., CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc., 2012, vol. 134, pp. 7231–7234.
  24. Baturina, O.A. Lu, Q., Padila, M.A., Xin, L., Li, W., Serov, A., Artyushkova, K., Atanassov, P., Xu, F., Epshteyn, A., Brintlinger, T., Schuette, M., and Collins, G.E., CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles, ACS Catal., 2014, vol. 4, pp. 3682–3695.
  25. Hori, Y., Takahashi, I., Koga, O., and Hoshi, N., Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes, J. Phys. Chem. B, 2002, vol. 106, pp. 15–17.
  26. Hori, Y., Takahashi, I., Koga, O., and Hoshi, N., Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes, J. Mol. Catal. A: Chem., 2003, vol. 199, pp. 39–47.
  27. Tang, W., Peterson, A.A., Varela, A.S., Jovanov, Z.P., Bech, L., Durand, W.J., Dahl, S., Norskov, J.K., and Chorkendorff, I., The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction, Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 76–81.
  28. Goncalves, M.R., Gomes, A., Condeco, J., Fernandes, T.R.C., Pardal, T., Sequeira, C.A.C., and Branco, J.B., Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits, Electrochim. Acta, 2013, vol. 102, pp. 388–392.
  29. Frese, K.W., Jr., Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, Sullivan, B.P., Krist, K., and Guard, H.E., Eds., Amsterdam, NY: Elsevier, 1993. p. 145–216.
  30. Shibata, H., Moulijn, J.A., and Mul, G., Enabling electrocatalytic Fischer–Tropsch synthesis from carbon dioxide over copper-based electrodes, Catal. Lett., 2008, vol. 123, pp. 186–192.
  31. Momose, Y., Sato, K., and Ohno, O., Electrochemical reduction of CO2 at copper electrodes and its relationship to the metal surface characteristics, Surf. Interface Anal., 2002, vol. 34, pp. 615–618.
  32. Zhu, D.D., Liu, J.L., and Qiao, S.Z., Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide, Adv. Mater., 2016, vol. 28, pp. 3423–3452.
  33. Brito, J.F., Araujo, A.R., Rajeshwar, K., and Zanoni, M.V.B., Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects, Chem. Eng. J., 2015, vol. 264, pp. 302–309.
  34. Brito, J.F., Silva, A.A., Cavalheiro, A.J., and Zanoni, M.V.B., Evaluation of the parameters affecting the photoelectrocatalytic reduction of CO2 to CH3OH at Cu/Cu2O electrode, Int. J. Electrochem. Sci., 2014, vol. 9, pp. 5961–5973.
  35. Ghadimkhani, G., de Tacconi, N.R., Chanmanee, W., Janaky, C., and Rajeshwar, K., Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays, Chem. Commun., 2013, vol. 49, pp. 1297–1299.
  36. Li, P., Xu, J., Jing, H., Wu, C., Peng, H., and Lu, J., Wedged N-doped CuO with more negative conductive band and lower overpotential for high efficiency photoelectric converting CO2 to methanol, Appl. Catal. B: Environ., 2014, vol. 156–157, pp. 134–140.
  37. Kecsenovity, E., Endrödi, B., Pápa, Zs., Hernádi, K., Rajeshwar, K., and Janáky, C., Decoration of ultralong carbon nanotubes with Cu2O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO2 reduction, J. Mater. Chem. A, 2016, vol. 4, pp. 3139–3147.
  38. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: VCH, 1994.
  39. Galus, Z., Fundamentals of Electrochemical Analysis, 2nd ed., New York: Horwood, 1994.
  40. Albery, W.J. and Hitchman, M.L., Ring-Disc Electrodes, Oxford: Clarendon, 1971, Chapter4.
  41. Frumkin, A.N. and Nekrasov, L.N., On ring disk electrode, Dokl. Akad. Nauk SSSR, 1959, vol. 126, p. 115.
  42. Ivanov, Yu.B. and Levich, V.G., Study of unstable intermediates of electrode reactions by means of rotating disk electrode. Dokl. Akad. Nauk SSSR, 1959, vol. 126, p. 1029.
  43. Frumkin, A.N., Nekrasov, L.N., Levich, W.G., and Ivanov, Yu.B., Die anwendung der rotierenden scheibenelektrode mit einem ringe zur untersuchung von zwischenprodukten elektrochemischer reaktionen, J. Electroanal. Chem., 1959–1960, vol. 1, p. 84.
  44. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice-Hall, 1962.
  45. Zhang, J., Pietro, W.J., and Lever, A.B.P., Rotating ring-disk electrode analysis of CO2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on a platinum ring, J. Electroanal. Chem., 1996, vol. 403, pp. 93–100.
  46. Lates, V., Falch, A., Jordaan, A., Peach, R., and Kriek, R.J., An electrochemical study of carbon dioxide electroreduction on gold-based nanoparticle catalysts, Electrochim. Acta, 2014, vol. 128, pp. 75–84.
  47. Wadas, A., Rutkowska, I.A., Gorczynski, A., Kubicki, M., Patroniak, V., and Kulesza, P.J., Fabrication of nanostructured palladium within tridentate Schiffb-baseligand coordination architecture: Enhancement of electrocatalytic activity toward CO2 electroreduction, Electrocatalysis, 2014, vol. 5, pp. 229–234.
  48. Ziaei-Azad, H. and Semagina, N., Bimetallic catalysts: Requirements for stabilizing PVP removal depend on the surface composition, Appl. Catal. A, 2014, vol. 482, p. 237.
  49. Kyrychenko, A., Korsun, O.M., Gabin, I.I., Kovalenko, S.M., and Kalugin, O.N., Atomistic simulations of coating of silver nanoparticles with poly (vinylpyrrolidone) oligomers: Effect of oligomer chain length, J. Phys. Chem. C, 2015, vol. 119, p. 7888.
  50. Lan, Y., Ma, S., Lu, J., and Kenis, P.J.A., Investigation of a Cu (core)/CuO (shell) catalyst for electrochemical reduction of CO2 in aqueous solution, Int. J. Electrochem. Sci., 2014, vol. 9, pp. 7300–7308.
  51. Malik, M.I., Malaibari, Z.O., Atieh, M., and Abussaud, B., Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O, Chem. Eng. Sci., 2016, vol. 152, pp. 468–477.
  52. Rutkowska, I.A., Wadas, A., and Kulesza, P.J., Enhancement of oxidative electrocatalytic properties of platinum nanoparticles by supporting onto mixed WO3/ZrO2 matrix, Appl. Surf. Sci., 2016, vol. 388, pp. 616–623.
  53. Rutkowska, I.A., Koster, M.D., Blanchard, G.J., and Kulesza, P.J., J. Power Sources, 2014, vol. 272, pp. 681–688.
  54. Rutkowska, I.A., Enhancement of oxidation of formic acid in acid medium on zirconia-supported phosphotungstate-decorated noble metal (Pd, Pt) nanoparticles, Aust. J. Chem., 2016, vol. 69, pp. 394–402.
  55. Lukaszewski, M., Grden, M., and Czerwinski, A., Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium–platinum–rhodium alloys, Electrochim. Acta, 2004, vol. 49, pp. 3161–3167.
  56. Siwek, H., Lukaszewski, M., and Czerwinski, A., Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys, Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 3752–3765.
  57. Camara, G.A. and Iwasita, T., Parallel pathways of ethanol oxidation: The effect of ethanol concentration, J. Electroanal. Chem., 2005, vol. 578, pp. 315–321.