Article
2021

Oxygen-Ion and Proton Transport in Sc-Doped Layered Perovskite BaLaInO4


N. A. Tarasova N. A. Tarasova , A. O. Galisheva A. O. Galisheva , I. E. Animitsa I. E. Animitsa , E. L. Lebedeva E. L. Lebedeva
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521080127
Abstract / Full Text

Abstract—The effect of isovalent doping Sc3+ → In3+ on the transport properties is studied for complex oxide BaLaInO4 characterized by the Ruddlesden–Popper structure. It is shown that the introduction of scandium increases the oxygen-ionic and protonic conductivity. In the humid air atmosphere at 500°С, both BaLaInO4 and BaLaIn0.9Sc0.1O4 are the protonic conductors with ~90–95% contribution of proton transfer.

Author information
  • Ural Federal University named after the First President of Russia B.E. Yel’tsin, Yekaterinburg, Russia

    N. A. Tarasova, A. O. Galisheva, I. E. Animitsa & E. L. Lebedeva

  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

    N. A. Tarasova & I. E. Animitsa

References
  1. Tarancon, A., Strategies for lowering solid oxide fuel cells operating temperature, Energies (Bassel, Switz.), 2009, vol. 2, p.1130.
  2. Wachsman, E.D. and Lee, K.T., Lowering the temperature of solid oxide fuel cells, Science, 2011, vol. 334, p. 935.
  3. Fabbri, E., Bi, L., Pergolesi, D., and Traversa, E., Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton-conducting electrolytes, Adv. Mater, 2012, vol. 24, p. 195.
  4. Zhang, Y., Knibbe, R., Sunarso, J., Zhong, Y., Zhou, W., Shao, Z., and Zhu, Z., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C, Adv. Mater., 2017, vol. 29, p. 1700132.
  5. Medvedev, D., Trends in research and development of protonic ceramic electrolysis cells, Int. J. Hydrogen Energy, 2019, vol. 44, p. 27711.
  6. Meng, Y., Gao, J., Zhao, Z., Amoroso, J., Tong, J., and Brinkman, K.S., Review: recent progress in low-temperature proton-conducting ceramics, J. Mater. Sci., 2019, vol. 54, p. 9291.
  7. Kochetova, N., Animitsa, I., and Medvedev, D., Recent activity in the development of proton-conducting oxides for high-temperature applications, RSC Adv., 2016, vol. 6, p. 73222.
  8. Troncoso, L., Alonso, J. A., and Aguadero, A., Low activation energies for interstitial oxygen conduction in the layered perovskites La1 + xSr1 – xInO4 + δ, J. Mater. Chem. A, 2015, vol. 3, p. 17797.
  9. Troncoso, L., Mariño, C., Arce, M. D., and Alonso, J.A., Dual oxygen defects in layered La1.2Sr0.8 – xBaxInO4 + δ (x = 0.2, 0.3) oxide-ion conductors: A neutron diffraction study, Mater., 2019, vol. 12, p. 1624.
  10. Fujii, K., Shiraiwa, M., Esaki, Y., Yashima, M., Kim, S.J., and Lee, S., Improved oxide-ion conductivity of NdBaInO4 by Sr doping, J. Mater. Chem. A, 2015, vol. 3, p. 11985.
  11. Yang, X., Liu, S., Lu, F., Xu, J., and Kuang, X., Acceptor doping and oxygen vacancy migration in layered perovskite NdBaInO4-based mixed conductors, J. Phys. Chem. C, 2016, vol. 120, p. 6416.
  12. Shiraiwa, M., Fujii, K., Esaki, Y., Kim, S.J., Lee, S., and Yashima, M., Crystal structure and oxide-ion conductivity of Ba1 + xNd1 – xInO4 – x/2, J. Electrochem. Soc., 2017, vol. 164, p. F1392.
  13. Tarasova, N., Animitsa, I., Galisheva, A., and Korona, D., Incorporation and conduction of protons in Ca, Sr, Ba-doped BaLaInO4 with Ruddlesden–Popper structure, Mater., 2019, vol. 12, p. 1668.
  14. Tarasova, N., Animitsa, I., Galisheva, A., and Pryakhina, V., Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M = Ti, Zr) with Ruddlesden–Popper structure, Solid State Sci., 2020, vol. 101, p. 106121.
  15. Tarasova, N., Animitsa, I., and Galisheva, A., Electrical properties of new protonic conductors Ba1 + xLa1 – xInO4 – 0.5x with Ruddlesden–Popper structure, J. Solid State Electrochem., 2020, vol. 24, p. 1497.
  16. Tarasova, N., Galisheva, A., and Animitsa, I., Improvement of oxygen-ionic and protonic conductivity of BaLaInO4 through Ti doping, Ionics, 2020, vol. 26, p. 5075.
  17. Titov, Yu.A., Belyavina, N.M., and Markiv, V.Ya., Synthesis and crystal structure of BaLaInO4 and SrLnInO4 (Ln–La, Pr), Rep. Nat. Acad. Sci. Ukraine, 2009, vol.10, p. 160.
  18. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., 1976, vol. A32, p. 751.
  19. Tarasova, N., Galisheva, A., and Animitsa, I., Effect of acceptor and donor doping on the state of protons in block-layered structures based on BaLaInO4, Solid State Commun., 2020, vol. 323, 114093.
  20. Kreuer, K. D., Proton-conducting oxides, Annu. Rev. Mater. Res., 2003, vol. 33, p. 333.
  21. Xu, L. and Jiang, D., Understanding hydrogen in perovskites from first principles, Comput. Mater. Sci., 2020, vol. 174, p. 109461.