Electrochemical Synthesis of Coatings Based on Polydiphenylamine-2-carboxylic Acid on Anodized Graphite Foil Modified by Graphene Nanosheets and Manganese Oxides

V. V. Abalyaeva V. V. Abalyaeva , N. N. Dremova N. N. Dremova , Yu. V. Baskakova Yu. V. Baskakova , E. N. Kabachkov E. N. Kabachkov , S. A. Baskakov S. A. Baskakov , O. N. Efimov O. N. Efimov
Russian Journal of Electrochemistry
Abstract / Full Text

The peculiarities of electrochemical polymerization of diphenylamine-2-carboxylic acid (DPAC) in alkaline electrolyte on anodized graphite foil (AGF) are studied with using of electrosynthesis (ES) modifiers (EM), namely, nanosheets of reduced graphene oxide (NSGO) and manganese dioxide. The physicochemical properties of the thus obtained electroactive polymer coatings (PDPAC) as well as their electrochemical characteristics in 1 М H2SO4 solution in the potential interval from –1 to +1.5 V are studied. The results of electrochemical, electron-microscopic, and X-ray diffraction investigations make it possible presuppose the presence of specific features in the electropolymerization of diphenylamine-2-carboxylic acid on AGF. The calculated values of the electrochemical capacitance and the stability of polymer coatings during their multicycle and charge–discharge tests have shown that the characteristics of these materials are suitable for developing the electrode materials for supercapacitors on their basis.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    V. V. Abalyaeva, N. N. Dremova, Yu. V. Baskakova, E. N. Kabachkov, S. A. Baskakov & O. N. Efimov

  1. Volfkovich, Yu.M., Electrochemical supercapacitors, Russ. J. Electrochem., 2021, vol. 57, p. 311.
  2. Prasada, K.R. and Miura, N., Polyaniline–MnO2 composite electrode for high energy density electrochemical capacitor, Electrochem. Solid-State Lett., 2004, vol. 7, p. A425.
  3. Reddy, R.N. and Reddy, R.G., Sol–gel MnO2 as an electrode material for electrochemical capacitors, J. Power Sources, 2003, vol. 124, p. 330.
  4. Sun, L.-J., Liu, X.-X., Chena, L., and Gu, W.-M., Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor, Electrochim. Acta, 2008, vol. 53, p. 3036.
  5. Chigane, M. and Ishikawa, M., Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, J. Electrochem. Soc., 2000, vol. 147, p. 2246.
  6. Feng, X., Li, Y., Chen, G., Liu, Z., Ning, X., Hu, A., Tang, Q., and Chen, X., Free-standing MnO2/nitrogen-doped graphene paper hybrids as binder-free electrode for supercapacitor applications, Mater. Lett., 2018, vol. 231, p. 114.
  7. Zhang, X., Ji, L., Zhang, Sh., and Yang, W., Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor, J. Power Sources, 2007, vol. 173, p. 1017.
  8. Xie, Y., Yang, Ch., Chen, P., Yuan, D., and Guo, K., MnO2-decorated hierarchical porous carbon composites for high performance asymmetric supercapacitors, J. Power Sources, 2019, vol. 425, p. 1. locate/jpowsour
  9. Abalyaeva, V.V., Nikolaeva, G.V., Kabachkov, E.N., and Efimov, O.N., The effect of supports of glassy-carbon and activated craphite foil on the electrochemical behavior of composite coatings based on polyaniline and its N-substituted derivatives, Russ. J. Electrochem., 2019, vol. 55, p. 745.
  10. Ozkan, S.Zh., Eremeev, I.S., Karpacheva, G.P., and Bondarenko, G.N., Oxidative polymerization of N‑phenylanthranilic acid in the heterophase system, Open J. Polymer Chem., 2013, vol. 3, p. 63.
  11. Ozkan, S.Z., Eremeev, I.S., Karpacheva, G.P., Bondarenko, G.N., Shandryuk, G.A., Prudskova, T.N., and Veselova, E.V., Polymers of diphenylamine-2-carboxylic acid: synthesis, structure, and properties, Polymer Sci. B., 2013, vol. 55, no. 3–4, p. 107.
  12. Abalyaeva, V.V, Dremova, N.N., Kabachkov, E.N., Efimov, O.N. Baskakova, Yu.V., and Karpacheva, G.P., Electrochemical polymerization of diphenylamine-2-carboxylic acid on glassy carbon and activated graphite foil, Polymer Sci., Ser. B, 2021, vol. 63, no. 4, p. 392.
  13. Yang, H. and Bard, A.J., The application of rapid scan cyclic voltammetry and digital simulation to the study of the mechanism of diphenylamine oxidation, radical cation dimerization, and polymerization in acetonitrile, J. Electroanal. Chem., 1991, vol. 306, nos. 1–2, p. 87.
  14. Nassa, H.R., Souri, A., Javadian, A., and Aminia, M.K., A novel mercury-free stripping voltammetric sensor for uranium used on electropolymerized N-phenylanthranilic acid film electrode, Sens. Actuators, B, 2015, vol. 215, p. 360.
  15. Chen, W. and Mu, Sh., The electrocatalytic oxidative polymerizations of aniline and aniline derivatives by grapheme, Electrochim. Acta, 2011, vol. 56, p. 2284.
  16. Abalyaeva, V.V., Nikolaeva, G.V., Dremova, N.N., Knerel’man, E.I., Davydova, G.I., Efimov, O.N., and Ionov, S.G., Electroactive polymer coatings on a modified graphite foil as electrodes for supercapacitors, Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 2, p. 321.
  17. Shulga, Y.M., Baskakov, S.A., Smirnov, V.A., Shulga, N.Y., Belay, K.G., and Gutsev, G.L., Graphene oxide films as separators of polyaniline-based supercapacitors, J. Power Sources, 2014, vol. 245, p. 33.
  18. Shulga, Y.M., Vasilets, V.N., Baskakov, S.A., Muradyan, V.E., Skryleva, E.A., and Parkhomenko, Yu.N., Photoreduction of graphite oxide nanosheets with vacuum ultraviolet radiation, High Energy Chem., 2012, vol. 46(2), p. 117.
  19. Ghasemi, S., Hosseini, S.R., and Boore-talari, O., Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor, Ultrason. Sonochem., 2018, vol. 40, p. 675.
  20. Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L., A practical beginner’s guide to cyclic voltammetry, J. Chem. Educ., 2018, vol. 95, p. 197.
  21. Dreyer, D.R., Park, S., Bielawskia, Ch.W., and Ruoff, R.S., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, vol. 39, p. 228.
  22. Abalyaeva, V.V., Baskakov, S.A., Dremova, N.N., and Efimov, O.N., Electrosynthesis of a composite based on grapheme oxide nanosheets and polyaniline with hexachloroiridate anion, Russ. Chem. Bull., 2014, no. 3, p. 634.
  23. Park, S. and Ruoff, R.S., Chemical methods for the production of graphenes, Nature Nanotechnol., 2009, vol. 4, p. 217.
  24. Abalyaeva, V.V., Efimov, O.N., Dremova, N.N., and Kabachkov, E.N., Synthesis and electrochemical properties of composite coatings based on polyaniline and manganese compounds on activated graphite foil, Prot. Met. Phys. Chem. Surf., 2019, vol. 57, no. 3, p. 314.
  25. Wang, Y.-G., Li, H.-Q., and Xia, Y.-Y., Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Adv. Mater., 2006, vol. 18, p. 2619.
  26. Gonc, D., Faria, R.C., Yonashiro, M., and Bulhŏes, L.O.S., Electrochemical oxidation of o‑aminophenol in aqueous acidic medium: formation of film and soluble products, J. Electroanal. Chem., 2000, vol. 487, p. 90.
  27. Trchová, M., Šeděnkov, I., and Stejskal, J., FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films, Polym. Degrad. Stab., 2004, vol. 86, no. 1, p. 179.
  28. Yang, N., Zhai, J., Wanc, M., Wanga, D., and Jiangca, L, Layered nanostructures of polyaniline with graphene oxide as the dopant and template, Synth. Met., 2010, vol. 160, p. 1617.
  29. Janosěvic, A., Marjanovi, B., Holler, P., Trchov, M., and Stejskal, J., Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes, Nanotechnology, 2008, vol. 19, p. 135606.
  30. Moyseowicz, A. and Gryglewicz, G., Hydrothermal-assisted synthesis of a porous polyaniline/reduced grapheme oxide composite as a high-performance electrode material for supercapacitors, Composites, Part B, 2019, vol. 159, p. 4.
  31. Li, X., Fang, X., Zhang, P., Yan, J., Chen, Y., and Chen, X., Preparation and properties of reduced graphene oxide/polyimide composite films, High Perform. Polym., 2020, vol. 32(1), p. 65.
  32. Ren, J., Huang, X., Wang, N., Zhang, X., Li, W., and Liu, D., Preparation of polyaniline-coated polyacrylonitrile fiber mats and their application to Cr(VI) removal, Synth Met., 2016, vol. 222, p. 255.
  33. Zhang, M., Jia, Y., Li, H., and Wang, J., A facile method to synthesis reduced graphene oxide/carbon nanotube hybrid fibers as binder-free electrodes for supercapacitors, Synth. Met., 2017, vol. 232, p. 66.
  34. Yang, H. and Bard, A.J., The application of rapid scan cyclic voltammetry and digital simulation to the study of the mechanism of diphenylamine oxidation, radical cation dimerization, and polymerization in acetonitrile, J. Electroanal. Chem. 1991, vol. 306, p. 87.
  35. Yanchun, Z., Miao, Ch.M., and Chen, X., Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template, Mater. Chem. Phys., 2005, vol. 91(2–3), p. 518.
  36. Lee, T., Yun, T., Park, B., Sharma, B., Song, H.-K., and Kim, B.-S., Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: importance of establishing intimate electronic contact through nanoscale blending, J. Mater. Chem., 2012, vol. 22, p. 21092.
  37. Kim, M., Lee, Ch., and Jang, J., Fabrication of highly flexible, scalable and high-performance supercapacitors using polyaniline/reduced graphene oxide. film with enhanced electrical conductivity and crystallinity, Adv. Funct. Mater., 2014, vol. 24, p. 2489.
  38. Hu, C.C. and Wang, C.C., Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, J. Electrochem. Soc., 2003, vol. 150, p. A1079.