Article
2022

Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine


 Charlton van der Horst Charlton van der Horst ,  Vernon Somerset Vernon Somerset
Russian Journal of Electrochemistry
https://doi.org/10.1134/S102319352205010X
Abstract / Full Text

This review describes the application of nanomaterials for the individual and simultaneous detection of dopamine (DA), uric acid (UA), and ascorbic acid (AA). Scientists have worked over the past years to modify electrode surfaces by using different nanomaterials to improve the selectivity, limits of detection, and sensitivity of sensors. In this review, the authors have briefly discussed the nanomaterials that were extensively applied in the construction and modification of working electrode surfaces for the detection of DA, UA, and AA. The electrochemical detection of DA, UA, and AA were categorized into three main sections including the detection in the presence of interferents, individual detection and the simultaneous detection of these molecules. For the individual detection of DA, UA, and AA the lowest detection limit was achieved by a Au/PDDA–rGO sensor in the detection of UA in urine samples. A detection limit of 0.0008 µM with a wide linear range of 0.25 to 150 µM was recorded. In the simultaneous detection of DA, UA, and AA in serum and urine samples, a Fe3O4–SnO2–Gr sensor gives the lowest detection limits (0.0071 µM for DA, 0.005 µM for UA, 0.0062 µM for AA) with good linear range (0.02 to 2.8 µM for DA, 0.015 to 2.40 µM for UA, 0.1 to 23 µM for AA). In the case of the simultaneous detection of DA and UA in serum and urine samples, the lowest detection limits were obtained by Au–Pt sensor. The detection limits (0.006 µM for DA, 0.038 µM for UA) with good linear range (0.1 to 400 µM for DA, 1 to 1000 µM for UA).

Author information
  • Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, 7535, Bellville, South Africa

    Charlton van der Horst &  Vernon Somerset

References
  1. He, W., Ding, Y., Ji, L., Zhang, X., and Yang, F., A high-performance sensor based on bimetallic NiCu nanoparticles for the simultaneous determination of five species of biomolecules, Sens. Actuators B-Chem., 2017, vol. 241, p. 949.
  2. Arrigoni, O. and Tullio, M.C.D., Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta, 2002, vol. 1569, p. 1.
  3. Yang, F.Q., Guan, J., and Li, S.P., Fast simultaneous determination of 14 nucleotides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography, Talanta, 2007, vol. 73, p. 269.
  4. Damier, P., Hirsch, E.C., Agid, Y., and Graybiel, A.M., The substantia nigra of the human brain II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease, Brain, 1999, vol. 122, p. 1437.
  5. Li, Y., Chen, S., Shao, X., Guo, J., Liu, X., and Liu, A., Association of uric acid with metabolic syndrome in men, premenopausal women and postmenopausal women, Int. J. Environ. Res. Public Health, 2014, vol. 11, p. 2899.
  6. Wang, L., Gong, C., Shen, Y., Ye, W., Xu, M., and Song, Y., A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid, Sens. Actuators B, 2017, vol. 242, p. 625.
  7. Kim, M.C., Kwak, J., and Lee, S.Y., Sensing of uric acid via cascade catalysis of uricase and a biomimetic catalyst, Sens. Actuators B-Chem., 2016, vol. 232, p. 744.
  8. Li, X.-L., Li, G., Jiang, Y.-Z., Kang, D., Jin, C.H., Shi, Q., Jin, T., Inoue, K., Todoroki, K., Toyo’oka, T., and Min, J.Z., Human nails metabolite analysis: a rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection, J. Chromatogr. B, 2015, vol. 1002, p. 394.
  9. Sha, R. and Badhulika, S., Facile green synthesis of reduced graphene oxide/tin oxide composite for highly selective and ultra-sensitive detection of ascorbic acid, J. Electroanal. Chem., 2018, vol. 816, p. 30.
  10. Li, Y., Ran, G., Yi, W.J., Luo, H.Q., and Li, N.B., A glassy carbon electrode modified with graphene and poly(acridine red) for sensing uric acid, Microchim. Acta, 2012, vol. 178, p. 115.
  11. Bagheri, H., Pajooheshpour, N., Jamali, B., Amidi, S., Hajian, A., and Khoshsafar, H., A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4–SnO2–Gr ternary nanocomposite, Microchem. J., 2017, vol. 131, p. 120.
  12. Motshakeri, M., Travas-Sejdic, J., Phillips, A.R.J., and Kilmartin, P.A., Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4-ethylenedioxythiophene)-modified sensor with application to milk, Electrochim. Acta, 2018, vol. 265, p. 184.
  13. Kenarkob, M. and Pourghobadi, Z., Electrochemical sensor for acetaminophen based on a glassy carbon electrode modified with ZnO/Au nanoparticles on functionalized multiwalled carbon nanotubes, Microchem. J., 2019, vol. 146, p. 1019.
  14. Cinti, S., Colozza, N., Cacciotti, I., Moscone, D., Polomoshnov, M., Sowade, E., Baumann, R.R., and Arduini, F., Electroanalysis moves towards paper-based printed electronics: carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study, Sens. Actuators B-Chem., 2018, vol. 265, p. 155.
  15. Ganesh, P.S. and Kumara Swamy, B.E., Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly(glutamic acid) modified carbon paste electrode, J. Electroanal. Chem., 2015, vol. 752, p. 17.
  16. Zhao, D., Yu, G., Tian, K., and Xu, C., A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 2016, vol. 82, p. 119.
  17. Tukimin, N., Abdullah, J., and Sulaiman, Y., Review-electrochemical detection of uric acid, dopamine and ascorbic acid, J. Electrochem. Soc., 2018, vol. 165, no. 7, p. B258.
  18. Zhang, X.D., Liu, X.J., Zhang, L., Li, D.L., and Liu, S.H., Novel porous Ag2S/ZnS composite nanospheres: fabrication and enhanced visible-light photocatalytic activities, J. Alloys Compd., 2016, vol. 655, p. 38.
  19. Mao, C.J., Chen, X.B., Niu, H.L., Song, J.M., Zhang, S.Y., and Cui, R.J., A novel enzymatic hydrogen peroxide biosensor based on Ag/C nano cables, Biosens. Bioelectron., 2012, vol. 31, p. 544.
  20. Teymourian, H., Salimi, A., and Khezrian, S., Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioelectrochemical sensing platform, Biosens. Bioelectron., 2013, vol. 49, p. 1.
  21. Yue, H.Y., Huang, S., Chang, J., Heo, C., Yao, F., Adhikari, S., Gunes, F., Liu, L.C., Lee, T.H., Oh, E.S., Li, B., Zhang, J., Huy, T.Q., Luan, N., Van, and Lee, Y.H., ZnO nanowire arrays on 3D hierarchical graphene foam: biomarker detection of Parkinson’s disease, ACS Nano, 2014, vol. 8, p. 1639.
  22. Abellán-Llobregat, A., Jeerapan, I., Bandodkar, A., Vidal, L., Canals, A., Wang, J., and Morallón, E., A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration, Biosens. Bioelectron., 2017, vol. 91, p. 885.
  23. Abellán-Llobregat, A., Vidal, L., Rodríguez-Amaro, R., Berenguer-Murcia, A., Canals, A., and Morallón, E., Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples, Electrochim. Acta, 2017, vol. 227, p. 275.
  24. Huang, Y., Miao, Y.E., Ji, S., Tjiu, W.W., and Liu, T., Electrospun carbon nanofibers decorated with Ag–Pt bimetallic nanoparticles for selective detection of dopamine, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 12449.
  25. Sun, C.L., Chang, C.T., Lee, H.H., Zhou, J., Wang, J., Sham, T.K., and Pong, W.F., Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid, ACS Nano, 2011, vol. 5, p. 7788.
  26. Sun, C.L., Lee, H.H., Yang, J.M., and Wu, C.C., The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites, Biosens. Bioelectron., 2011, vol. 26, p. 3450.
  27. Cai, W., Lai, J., Lai, T., Xie, H., and Ye, J., Controlled functionalization of flexible graphene fibres for the simultaneous determination of ascorbic acid, dopamine and uric acid, Sens. Actuator B-Chem., 2016, vol. 224, p. 225.
  28. Deng, W., Yuan, X., Tan, Y., Ma, M., and Xie, Q., Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules, Biosens. Bioelectron., 2016, vol. 85, p. 618.
  29. Jiang, J. and Du, X., Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites, Nanoscale, 2014, vol. 6, p. 11303.
  30. Yang, Y.J. and Li, W., CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite, Biosens. Bioelectron., 2014, vol. 56, p. 300.
  31. Kalimuthu, P. and John, S.A., Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode, Talanta, 2010, vol. 80, p. 1686.
  32. Lin, K.-C., Tsai, T.-H., and Chen, S.-M., Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film, Biosens. Bioelectron., 2010, vol. 26, p. 608.
  33. Sajid, M., Nazal, M.K., Mansha, M., Alshara, A., Jillani, S.M.S., and Basheer, C., Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review, Trends Anal. Chem., 2016, vol. 76, p. 15.
  34. Abbas, M.W., Soomro, R.A., Kalwar, N.H., Zahoor, M., Avci, A., Pehlivan, E., Hallam, K.R., and Willander, M., Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid, Microchem. J., 2019, vol. 146, p. 517.
  35. Bai, Z., Zhou, C., Xu, H., Wang, G., Pang, H., and Ma, H., Polyoxometalates-doped Au nanoparticles and reduced graphene oxide: a new material for the detection of uric acid in urine, Sens. Actuators B-Chem., 2017, vol. 243, p. 361.
  36. Jain, S., Verma, S., Singh, S.P., and Sharma, S.N., An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection, Biosens. Bioelectron., 2019, vol. 127, p. 135.
  37. El Ridi, R. and Tallima, H., Physiological functions and pathogenic potential of uric acid: a review, J. Adv. Res., 2017, vol. 8, no. 5, p. 487.
  38. Grassi, D., Ferri, L., Desideri, G., Giosia, P.D., Cheli, P., Pinto, R.D., Properzi, G., and Ferri, C., Chronic hyperuricemia, uric acid deposit and cardiovascular risk, Curr. Pharm. Des., 2013, vol. 19, no. 13, p. 2432.
  39. Sekli-Belaidi, F., Temple-Boyer, P., and Gros, P., Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids, J. Electroanal. Chem., 2010, vol. 647, p. 159.
  40. Harraz, F.A., Faisal, M., Ismail, A.A., Al-Sayari, S.A., Al-Salami, A.E., Al-Hajry, A., and Al-Assiri, M.S., TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor, J. Electroanal. Chem., 2019, vol. 832, p. 225.
  41. Huang, D., Li, X., Chen, M., Chen, F., Wan, Z., Rui, R., Wang, R., Fan, S., and Wu, H., An electrochemical sensor based on a porphyrin dye-functionalized multiwalled carbon nanotubes hybrid for the sensitive determination of ascorbic acid, J. Electroanal. Chem., 2019, vol. 841, p. 101.
  42. Zhang, X., Yu, S., He, W., Uyama, H., Xie, Q., Zhang, L., and Yang, F., Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid, Biosens. Bioelectron., 2014, vol. 55, p. 446.
  43. Zhang, W.X., Zheng, J.Z., Shi, J.G., Lin, Z.Q., Huang, Q.T., Zhang, H.Q., Wei, C., Chen, J.H., Hu, S.R., and Hao, A.Y., Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine, Anal. Chim. Acta, 2015, vol. 853, p. 285.
  44. Vilian, A.T.E., An, S., Choe, S.R., Kwak, C.H., Huh, Y.S., Lee, J., and Han, Y.-K., Fabrication of 3D honeycomb-like porous polyurethane-functionalized reduced graphene oxide for detection of dopamine, Biosens. Bioelectron., 2016, vol. 86, p. 122.
  45. Lu, Y., Dong, L., Jianshe, H., and Tianyan, Y., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode, Sens. Actuators B-Chem., 2014, vol. 193, p. 166.
  46. Fu, Y.Y., Sheng, Q.L., and Zheng, J.B., The novel sulfonated polyaniline-decorated carbon nanosphere nanocomposites for electrochemical sensing of dopamine, New J. Chem., 2017, vol. 41, p. 15439.
  47. Abdul, R.P. and Jae-Seung, L., Recent advances in optical detection of dopamine using nanomaterials, Microchim. Acta, 2017, vol. 184, p. 1239.
  48. Van der Horst, C., Silwana, B., Iwuoha, E., and Somerset, V., Spectroscopic and voltammetric analysis of platinum group metals in road dust and roadside soil, Environments, 2018, vol. 5, p. 120.
  49. Silwana, B., Van der Horst, C., Iwuoha, E., and Somerset, V., A brief review on recent developments of electrochemical sensors in environmental application for PGMs, J. Environ. Sci. Health Part A, 2016, vol. 51, p. 1233.
  50. Zeng, Y., Zhu, Z., Du, D., and Lin, Y., Nanomaterial-based electrochemical biosensors for food safety, J. Electroanal. Chem., 2016, vol. 781, p. 147.
  51. Laffont, L., Hezard, T., Gros, P., Heimbürger, L.E., Sonke, J.E., Behra, P., and Evrard, D., Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry-including a chloride desorption step, Talanta, 2015, vol. 141, p. 26.
  52. Van der Horst, C., Silwana, B., Iwuoha, E., and Somerset, V., Application of a bismuth-silver nanosensor for the simultaneous determination of Pt–Rh and Pd–Rh complexes, J. Nano Res., 2016, vol. 44, p. 126.
  53. Silwana, B., Van der Horst, C., Iwuoha, E., and Somerset, V., Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles, Thin Solid Films, 2015, vol. 592, p. 124.
  54. Al-Hossainy, A.F., Abd-Elmageed, A.A.I., and Ibrahim, A.T.A., Synthesis, structural and optical properties of gold nanoparticle-graphene-selenocysteine composite bismuth ultrathin film electrode and its application to Pb(II) and Cd(II) determination, Arab. J. Chem., 2019, vol. 12, no. 8, p. 2853.
  55. Wong, A., Razzino, C.A., Silva, T.A., and Fatibello-Filho, O., Square-wave voltammetric determination of clindamycin using a glassy carbon electrode modified with graphene oxide and gold nanoparticles within a cross-linked chitosan film, Sens. Actuators B-Chem., 2016, vol. 231, p. 183.
  56. Zhou, Y., Tang, L., Zeng, G., Zhang, C., Xie, X., Liu, Y., Wang, J., Tang, J., Zhang, Y., and Deng, Y., Label-free detection of lead using impedimetric sensor based on ordered mesoporous carbon-gold nanoparticles and DNA enzyme catalytic beacons, Talanta, 2016, vol. 146, p. 641.
  57. Hezard, T., Fajerwerg, K., Evrard, D., Collière, V., Behra, P., and Gros, P., Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: application to Hg(II) trace analysis, J. Electroanal. Chem., 2012, vol. 664, p. 46.
  58. Zhu, L., Xu, L., Huang, B., Jia, N., Tan, L., and Yao, S., Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticle–graphene–cysteine composite modified bismuth film electrode, Electrochim. Acta, 2014, vol. 115, p. 471.
  59. Kamyabi, M.A. and Aghaei, A., Electromembrane extraction coupled to square wave anodic stripping voltammetry for selective preconcentration and determination of trace levels of As(III) in water samples, Electrochim. Acta, 2016, vol. 206, p. 192.
  60. Gan, X., Zhao, H., Quan, X., and Zhang, Y., An electrochemical sensor based on p-aminothiophenol/Au nanoparticle-decorated HxTiS2 nanosheets for specific detection of picomolar Cu(II), Electrochim. Acta, 2016, vol. 190, p. 480.
  61. Idris, A.O., Mabuba, N., and Arotiba, O.A., Electroanalysis of selenium in water on an electrodeposited gold-nanoparticle modified glassy carbon electrode, J. Electroanal. Chem., 2015, vol. 758, p. 7.
  62. Wan, H., Sun, Q., Li, H., Sun, F., Hu, N., and Wang, P., Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper, Sens. Actuators B-Chem., 2015, vol. 209, p. 336.
  63. Silwana, B., Van der Horst, C., Iwuoha, E., and Somerset, V., A sensitive reduced graphene oxide-antimony nanofilm sensor for simultaneous determination of PGMs, J. Nano Res., 2016, vol. 44, p. 134.
  64. Zhang, B., Chen, J., Zhu, H., Yang, T., Zou, M., Zhang, M., and Du, M., Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions, Electrochim. Acta, 2016, vol. 196, p. 422.
  65. Silwana, B., Van der Horst, C., Iwuoha, E., and Somerset, V., Reduced graphene oxide impregnated antimony nanoparticle sensor for electroanalysis of platinum group metals, Electroanalysis, 2016, vol. 28, p. 1.
  66. Van der Horst, C., Silwana, B., Iwuoha, E., and Somerset, V., Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples, J. Electroanal. Chem., 2015, vol. 752, p. 1.
  67. Fan, H.L., Zhou, S.F., Gao, J., and Liu, Y.Z., Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions, J. Alloys Compd., 2016, vol. 671, p. 354.
  68. Li, W.J., Yao, X.Z., Guo, Z., Liu, J.H., and Huang, X.J., Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions, J. Electroanal. Chem., 2015, vol. 749, p. 75.
  69. Zhou, S.F., Han, X.J., and Liu, Y.Q., SWASV performance toward heavy metal ions based on a high-activity and simple magnetic chitosan sensing nanomaterials, J. Alloys Compd., 2016, vol. 684, p. 1.
  70. Zhang, X. and Zheng, J., Hollow carbon sphere supported Ag nanoparticles for promoting electrocatalytic performance of dopamine sensing, Sens. Actuator B‑Chem., 2019, vol. 290, p. 648.
  71. Alexander, C. and Bandyopadhyay, K., Two-dimensional palladium nanoparticle assemblies as electrochemical dopamine sensors, Inorg. Chim. Acta, 2017, vol. 468, p. 171.
  72. Mahmoudian, M.R., Basirun, W.J., Sookhakian, M., Woi, P.M., Zalnezhad, E., Hazarkhani, H., and Alias, Y., Synthesis and characterization of a-Fe2O3/polyaniline nanotube composite as electrochemical sensor for uric acid detection, Adv. Powder Technol., 2019, vol. 30, p. 384.
  73. Sharma, G., Gupta, V.K., Agarwal, S., Kumar, A., Thakur, S., and Pathania, D., Fabrication and characterization of Fe@MoPO nanoparticles: ion exchange behaviour and photocatalytic activity against malachite green, J. Mol. Liq., 2016, vol. 219, p. 1137.
  74. Toshima, N. and Yonieawa, T., Bimetallic nanoparticles: novel materials for physical and chemical applications, New J. Chem., 1998, vol. 11, p. 1179.
  75. Van der Horst, C., Silwana, B., Iwuoha, E., Gil, E., and Somerset, V., Improved detection of ascorbic acid with a bismuth–silver nanosensor, Food Anal. Methods, 2016, vol. 9, p. 2560.
  76. Van der Horst, C., Silwana, B., Gil, E., Iwuoha, E., and Somerset, V., Simultaneous detection of paracetamol, ascorbic acid, and caffeine using a bismuth–silver nanosensor, Electroanalysis, 2020, vol. 32, p. 3098.
  77. Arvinte, A., Crudu, I.-A., Doroftei, F., Timpu, D., and Pinteala, M., Electrochemical co-deposition of silver–gold nanoparticles on CNT-based electrode and their performance in electrocatalysis of dopamine, J. Electroanal. Chem., 2018, vol. 829, p. 184.
  78. Ma, L., Zhang, Q., Wu, C., Zhang, Y., and Zeng, L., PtNi bimetallic nanoparticles loaded MoS2 nanosheets: preparation and electrochemical sensing application for the detection of dopamine and uric acid, Anal. Chim. Acta, 2019, vol. 1055, p. 17.
  79. Mallikarjuna, K., Veera Manohara Reddy, Y., Sravani, B., Madhavi, G., Kim, H., Agarwal, S., and Kumar Gupta, V., Simple synthesis of biogenic Pd–Ag bimetallic nanostructures for an ultrasensitive electrochemical sensor for sensitive determination of uric acid, J. Electroanal. Chem., 2018, vol. 822, p. 163.
  80. Gopalakrishnan, A., Sha, R., Vishnu, N., Kumar, R., and Badhulika, S., Disposable, efficient and highly selective electrochemical sensor based on cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices, Nano-Struct. Nano-Objects, 2018, vol. 16, p. 96.
  81. Van der Horst, C., Silwana, B., Iwuoha, E., and Somerset, V., Synthesis and characterization of bismuth-silver nanoparticles for electrochemical sensor applications, Anal. Lett., 2015, vol. 48, no. 8, p. 1311.
  82. Liu, L., Liu, L., Wang, Y., and Ye, B.-C., A novel electrochemical sensor based on bimetallic metal-organic framework-derived porous carbon for detection of uric acid, Talanta, 2019, vol. 199, p. 478.
  83. Harraz, F.A., Faisal, M., Al-Salami, A.E., El-Toni, A.M., Almadiy, A.A., Al-Sayari, S.A., and Al-Assiri, M.S., Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid, Mater. Lett., 2019, vol. 234, p. 96.
  84. Zhang, Y., Liu, P., Xie, S., Chen, M., Zhang, M., Cai, Z., Liang, R., Zhang, Y., and Cheng, F., A novel electrochemical ascorbic acid sensor based on branch-trunk Ag hierarchical nanostructures, J. Electroanal. Chem., 2018, vol. 818, p. 250.
  85. Huang, D., Li, X., Chen, M., Chen, F., Wan, Z., Rui, R., Wang, R., Fan, S., and Wu, H., An electrochemical sensor based on a porphyrin dye-functionalized multiwalled carbon nanotubes hybrid for the sensitive determination of ascorbic acid, J. Electroanal. Chem., 2019, vol. 841, p. 101.
  86. Inagaki, C.S., Oliveira, M.M., Bergamini, M.F., Marcolino-Junior, L.H., and Zarbin, A.J.G., Facile synthesis and dopamine sensing application of three-component nanocomposite thin films based on polythiophene, gold nanoparticles and carbon nanotubes, J. Electroanal. Chem., 2019, vol. 840, p. 208.
  87. Liu, X., Fu, Y., Sheng, Q., and Zheng, J., Au nanoparticles attached Ag@C core–shell nanocomposites for highly selective electrochemical detection of dopamine, Microchem. J., 2019, vol. 146, p. 509.
  88. Jiao, J., Zuo, J., Pang, H., Tan, L., Chen, T., and Ma, H., A dopamine electrochemical sensor based on Pd–Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes, J. Electroanal. Chem., 2018, vol. 827, p. 103.
  89. Fazio, E., Spadaro, S., Bonsignore, M., Lavanya, N., Sekar, C., Leonardi, S.G., Neri, G., and Neri, F., Molybdenum oxide nanoparticles for the sensitive and selective detection of dopamine, J. Electroanal. Chem., 2018, vol. 814, p. 91.
  90. Sookhakian, M., Basirun, W.J., Goh, B.T., Woi, P.M., and Alias, Y., Molybdenum disulfide nanosheet decorated with silver nanoparticles for selective detection of dopamine, Colloids Surf. B: Biointerfaces, 2019, vol. 176, p. 80.
  91. Zeng, Y., Zhu, Z., Du, D., and Lin, Y., Nanomaterial-based electrochemical biosensors for food safety, J. Electroanal. Chem., 2016, vol. 781, p. 147.
  92. Li, Y., Jing, T., Xu, G., Tian, J., Dong, M., Shao, Q., Wang, B., Wang, Z., Zheng, Y., Yang, C., and Guo, Z., 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme, Polymer, 2018, vol. 149, p. 13.
  93. Mengyao, D., Qiang, L., Liu, H., Chuntai, L., Wujcik, E.K., Shao, Q., Ding, T., Ma, X., Shen, C., and Guo, Z., Thermoplastic polyurethane–carbon black nanocomposite coating: fabrication and solid particle erosion resistance, Polymer, 2018, vol. 158, p. 381.
  94. Zhang, J., Li, P., Zhang, Z., Wang, X., Tang, J., Liu, H., Shao, Q., Ding, T., Umar, A., and Guo, Z., Solvent-free graphene liquids: promising candidates for lubricants without the base oil, J. Colloid Interface Sci., 2019, vol. 542, p. 159.
  95. Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N., Wei, R., Subramania, A., and Guo, Z., Electromagnetic interference shielding polymer sand nanocomposites—a review, Polym. Rev., 2019, vol. 59, no. 2, p. 280.
  96. Song, B., Wang, T., Sun, H., Shao, Q., Zhao, J., Song, K., Hao, L., Wang, L., and Guo, Z., Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance, Dalton Trans., 2017, vol. 46, p. 15769.
  97. Wu, N., Xu, D., Wang, Z., Wang, F., Liu, J., Liu, W., Shao, Q., Liu, H., Gao, Q., and Guo, Z., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods, Carbon, 2019, vol. 145, p. 433.
  98. Cheng, C., Fan, R., Ren, Y., Ding, T., Qian, L., Guo, J., Li, X., An, L., Lei, Y., Yin, Y., and Guo, Z., Radiofrequency negative permittivity in random carbon nanotubes/alumina nanocomposites, Nanoscale, 2017, vol. 9, p. 5779.
  99. Du, H., Zhao, C.X., Lin, J., Guo, J., Wang, B., Zhen, H., Shao, Q., Pan, D., Wujcik, E.K., and Guo, Z., Carbon nanomaterials in direct liquid fuel cells, Chem. Rec., 2018, vol. 18, p. 1365.
  100. Gu, H., Zhang, H., Ma, C., Xu, X., Wang, Y., Wang, Z., Wei, R., Liu, H., Liu, C., Shao, Q., Mai, X., and Guo, Z., Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy, Carbon, 2019, vol. 142, p. 131.
  101. Huang, J., Cao, Y., Shao, Q., Peng, X., and Guo, Z., Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: morphology dependence of fibrillar vs particulate structures, Ind. Eng. Chem. Res., 2017, vol. 56, p. 10689.
  102. Li, Z., Wang, B., Qin, X., Wang, Y., Liu, C., Shao, Q., Wang, N., Zhang, J., Shen, C., and Guo, Z., Super hydrophobic/superoleophilic polycarbonate/carbon nanotubes porous monolith for selective oil adsorption from water, ACS Sustain. Chem. Eng., 2018, vol. 6, p. 13747.
  103. Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S., and Guo, Z., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon, 2018, vol. 140, p. 696.
  104. Thamilselvan, A., Manivel, P., Rajagopal, V., Nesakumar, N., and Suryanarayanan, V., Improved electrocatalytic activity of Au@Fe3O4 magnetic nanoparticles for sensitive dopamine detection, Colloids Surf. B: Biointerfaces, 2019, vol. 180, p. 1.
  105. Hu, B., Liu, Y., Wang, Z-W., Song, Y., Wang, M., Zhang, Z., and Liu, C.-S., Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid, Appl. Surf. Sci., 2018, vol. 441, p. 694.
  106. Zhao, G., Wang, H., and Liu, G., Recent advances in chemically modified electrodes, microfabricated devices and injection systems for the electrochemical detection of heavy metals: a review, Int. J. Electrochem. Sci., 2017, vol. 12, p. 8622.
  107. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater., 2007, vol. 6, p. 183.
  108. Shahmiri, M.R., Bahari, A., Karimi-Maleh, H., Hosseinzadeh, R., and Mirnia, N., Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen, Sens. Actuators B-Chem., 2013, vol. 177, p. 70.
  109. Brownson, D.A.C. and Banks, C.E., Graphene electrochemistry: an overview of potential applications, Analyst, 2010, vol. 135, p. 2768.
  110. Wang, J., Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005, vol. 17, p. 7.
  111. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., Graphene-based electrochemical sensors and biosensors: a review, Electroanalysis, 2010, vol. 22, p. 1027.
  112. Zhou, M., Zhai, Y., and Dong, S., Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem., 2009, vol. 81, p. 5603.
  113. Yang, H., Zhao, J., Qiu, M., Sun, P., Han, D., Niu, L., and Cui, G., Hierarchical bi-continuous Pt decorated nanoporous Au–Sn alloy on carbon fibre paper for ascorbic acid, dopamine and uric acid simultaneous sensing, Biosens, Bioelectron., 2019, vols. 124–125, p. 191.
  114. Zhao, Y., Yang, Z., Fan, W., Wang, Y., Li, G., Cong, H., and Yuan, H., Carbon nanotube/carbon fibre electrodes via chemical vapour deposition for simultaneous determination of ascorbic acid, dopamine and uric acid, Arab. J. Chem., 2018, vol. 13, no. 1.
  115. Reddy, Y.V.M., Sravani, B., Agarwal, S., Gupta, V.K., and Madhavi, G., Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, J. Electroanal. Chem., 2018, vol. 820, p. 168.
  116. Beluomini, M.A., da Silva, J.L., Cardoso de Sa, A., Buffon, E., Pereira, T.C., and Stradiotto, N.R., Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: a review, J. Electroanal. Chem., 2019, vol. 840, p. 343.
  117. Edris, N.M.M.A., Abdullah, J., Kamaruzaman, S., Saiman, M.I., and Sulaiman, Y., Electrochemical reduced graphene oxide-poly (eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Arab. J. Chem., 2018, vol.11, p. 1301.
  118. Zou, C., Zhong, J., Li, S., Wang, H., Wang, J., Yan, B., and Du, Y., Fabrication of reduced graphene oxide-bimetallic PdAu nanocomposites for the electrochemical determination of ascorbic acid, dopamine, uric acid and rutin, J. Electroanal. Chem., 2017, vol. 805, p. 110.
  119. Pruneanu, S., Biris, A.R., Pogacean, F., Socaci, C., Coros, M., Rosu, M.C., Watanabe, F., and Biris, A.S., The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes, Electrochim. Acta, 2015, vol. 154, p. 197.
  120. Shang, L., Zhao, F., and Zeng, B., Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine, Electrochim. Acta, 2015, vol. 168, p. 330.
  121. Tığ, G.A., Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and L‑tryptophan based on Ag nanoparticles and poly(L-arginine)–graphene oxide composite, J. Electroanal. Chem., 2017, vol. 807, p. 19.
  122. Poudyal, D.C., Satpati, A.K., Kumar, S., and Haram, S.K., High sensitive determination of dopamine through catalytic oxidation and preconcentration over gold–multiwall carbon nanotubes composite modified electrode, Mat. Sci. Eng. C, 2019, vol. 103, p. 109788.
  123. Xu, Q., Yuana, H., Dong, X., Zhang, Y., Asif, M., Dong, Z., He, W., Ren, J., Sun, Y., and Xiao, F., Dual nanoenzyme modified microelectrode based on carbon fibre coated with Au–Pd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinical cancer samples, Biosens. Bioelectron., 2018, vol. 107, p. 153.
  124. Cui, L., Wu, J., and Ju, H., Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials, Biosens. Bioelectron., 2015, vol. 63, p. 276.
  125. Wan, Q., Yu, F., Zhu, L., Wang, X., and Yang, N., Bucky-gel coated glassy carbon electrodes, for voltammetric detection of femtomolar levelled lead ions, Talanta, 2010, vol. 82, p. 1820.
  126. Cerovac, S., Guzsvány, V., Kónya, Z., Ashrafi, A.M., Švancara, I., Rončević, S., Kukovecz, Á., Dalmacija, B., and Vytřas, K., Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth–oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode, Talanta, 2015, vol. 134, p. 640.
  127. Wei, Y., Yang, R., Chen, X., Wang, L., Liu, J.H., and Huang, X.J., A cation trap for anodic stripping voltammetry: NH3-plasma-treated carbon nanotubes for adsorption and detection of metal ions, Anal. Chim. Acta, 2012, vol. 755, p. 54.
  128. Afkhami, A., Ghaedi, H., Madrakian, T., and Rezaeivala, M., Highly sensitive simultaneous electrochemical determination of trace amounts of Pb(II) and Cd(II) using a carbon paste electrode modified with multi-walled carbon nanotubes and a newly synthesized Schiff base, Electrochim. Acta, 2013, vol. 89, p. 377.
  129. Chang, Y.H., Woi, P.M., and Alias, Y.B., The selective electrochemical detection of dopamine in the presence of ascorbic acid and uric acid using electro-polymerised-β-cyclodextrin incorporated f-MWCNTs/polyaniline modified glassy carbon electrode, Microchem. J., 2019, vol. 148, p. 322.
  130. Savk, A., Özdil, B., Demirkan, B., Nas, M.S., Calimli, M.H., Alma, M.H., Inamuddin, Asiri, A.M., and Şen, F., Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid, Materials Sci. Eng. C, 2019, vol. 99, p. 248.
  131. Wang, H., Xiao, L.-G., Chu, X.-F., Chi, Y.-D., and Yang, X.-T., Rational design of gold nanoparticle/graphene hybrids for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Chin. J. Anal. Chem., 2016, vol. 44, no. 12, p. e1617.
  132. Zhu, Q., Bao, J., Huo, D., Yang, M., Wu, H., Hou, C., Zhao, Y., Luo, X., and Fa, H., 3DGH–Fc based electrochemical sensor for the simultaneous determination of ascorbic acid, dopamine and uric acid, J. Electroanal. Chem., 2017, vol. 799, p. 459.
  133. Wang, M., Cui, M., Liu, W., and Liu, X., Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid, J. Electroanal. Chem., 2019, vol. 832, p. 174.
  134. Tukimin, N., Abdullah, J., and Sulaiman, Y., Electrodeposition of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/manganese dioxide for simultaneous detection of uric acid, dopamine and ascorbic acid, J. Electroanal. Chem., 2018, vol. 820, p. 74.
  135. Thangamuthu, R., Senthil Kumar, S.M., and Chandrasekara Pillai, K., Direct amperometric determination of l-ascorbic acid (Vitamin C) at octacyanomolybdate-doped-poly(4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals, Sens. Actuators B-Chem., 2007, vol. 120, p. 745.
  136. Ali, A., Jamal, R., Abdiryim, T., and Huang, X., Synthesis of monodispersed PEDOT/Au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid, J. Electroanal. Chem., 2017, vol. 787, p. 110.
  137. Zhang, K., Chen, X., Li, Z., Wang, Y., Sun, S., Wang, L., Guo, T., Zhang, D., Xu, Z., Zhou, X., and Lu, X., Au–Pt bimetallic nanoparticles decorated on sulfonated nitrogen sulfur codoped graphene for simultaneous determination of dopamine and uric acid, Talanta, 2018, vol. 178, p. 315.
  138. Hou, J., Xu, C., Zhao, D., and Zhou, J., Facile fabrication of hierarchical nanoporous AuAg alloy and its highly sensitive detection towards dopamine and uric acid, Sens. Actuators B-Chem., 2016, vol. 225, p. 241.
  139. Immanuel, S., Aparna, T.K., and Sivasubramanian, R., A facile preparation of Au–SiO2 nanocomposite for simultaneous electrochemical detection of dopamine and uric acid, Surf. Interfaces, 2019, vol. 14, p. 82.
  140. Krishnamoorthy, K., Sudha, V., Kumar, S.M.S., and Thangamuthu, R., Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode, J. Alloys Compd., 2018, vol. 748, p. 338.
  141. Rahman, M.M., Lopa, N.S., Ju, M.J., and Lee, J.-J., Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid, J. Electroanal. Chem., 2017, vol. 792, p. 54.