Activity and Stability of a Platinum Nanostructured Catalyst Deposited onto a Nitrogen-Doped Carbonaceous Support

E. A. Moguchikh E. A. Moguchikh , K. O. Paperzh K. O. Paperzh , A. A. Alekseenko A. A. Alekseenko , E. N. Gribov E. N. Gribov , V. E. Guterman V. E. Guterman
Russian Journal of Electrochemistry
Abstract / Full Text

A comparative analysis of the microstructure and electrochemical behavior of a platinum PCN catalyst synthesized over a nitrogen-doped carbon support and a commercial Pt/C-electrocatalyst HiSPEC3000 is carried out. The PCN catalyst is characterized by a smaller size of platinum nanoparticles and exhibits not only a higher activity in oxygen reduction reaction but also a higher corrosion-morphological resistance in acidic media.

Author information
  • Southern Federal University, Rostov-on-Don, Russia

    E. A. Moguchikh, K. O. Paperzh, A. A. Alekseenko & V. E. Guterman

  • Novosibirsk State University, Novosibirsk, Russia

    E. N. Gribov

  1. Zhang, H., Hwang, S., Wang, M., Feng, Z., Karakalos, S., Luo, L., Qiao, Z., Xie, X., Wang, Ch., Su, D., Shao, Yu., and Wu, G., Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation, J. Am. Chem. Soc., 2017, vol. 40, no. 139, p. 14143.
  2. Zheng, X., Wu, J., Cao, X., Abbott, J., Jin, C., Wang, H., Strasser, P., Yang, R., Chen, X., and Wu, G., N-, P-, and S-doped Graphene-like Carbon Catalysts Derived from Onium Salts with Enhanced Oxygen Chemisorption for Zn-air Battery Cathodes, Appl. Catal. B: Environmental, 2018.
  3. Moriau, L.J., Hrnjic, A., Pavlisic, A., Kamsek, A.R., Petek, U., Ruiz-Zepeda, F., Sala, M., Pavko, L., Selih, V.S., Bele, M., Jovanovic, P., Gatalo, M., and Hodnik, N., Resolving the nanoparticles structure-property relationships at the atomic level: a study of Pt-based electrocatalysts, iScience, 2021, vol. 24, no. 2, 102102.
  4. Maillard, F., Simonov, P.A., and Savinova, E.R., Carbon Materials as Supports for Fuel Cell Electrocatalysts, Carbon Mater. Catalysis, 2008, p. 429.
  5. Bentele, D., Aylar, K., Olsen, K., Klemm, E., and Eberhardt, S.H., PEMFC Anode Durability: Innovative Characterization Methods and Further Insights on OER Based Reversal Tolerance, J. Electrochem. Soc., 2021, vol. 168, no. 2, p. 024515.
  6. Stevens, D.A. and Dahn, J.R., Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells, Carbon, 2005, vol. 43, p. 179.
  7. Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M.L., and Jarvi, T.D., A Reverse-Current Decay Mechanism for Fuel Cells, Electrochem. Solid-State Lett., 2005, vol. 8, p. A273.
  8. Lee, G., Choi, H., and Tak, Y., In situ durability of various carbon supports against carbon corrosion during fuel starvation in a PEM fuel cell cathode, Nanotech., 2018, vol. 30, no. 8, p. 085402.
  9. Du, Y., Shen, Y.B., Zhan, Y.L., Ning, F.D., Yan, L.M., and Zhou, X.C., Highly active iridium catalyst for hydrogen production from formic acid, Chinese Chem. Lett., 2017, vol. 28, p. 1746.
  10. Castanheira, L., Silva, W.O., Lima, F.H.B., Crisci, A., Dubau, L., and Maillard, F., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere, ACS Catal., 2015, vol. 5, p. 2184.
  11. Chen, J., Hu, J., and Waldecker, J.R., A Comprehensive Model for Carbon Corrosion during Fuel Cell Start-Up, J. Electrochem. Soc., 2015, vol. 162, no. 8, p. F878.
  12. Jia, F., Guo, L., and Liu, H., Dynamic characteristics of internal current during startups/shutdowns in proton exchange membrane fuel cells, Int. J. Energy Res., 2019.
  13. Tang, H., Qi, Z., Ramani, M., and Elter, J., PEM Fuel Cell Cathode Carbon Corrosion due to the Formation of Air/Fuel Boundary at the Anode, J. Power Sources, 2008, vol. 158, p. 1306.
  14. Meyer, Q., Pivac, I., Barbir, F., and Zhao, C., Detection of oxygen starvation during carbon corrosion in proton exchange membrane fuel cells using low-frequency electrochemical impedance spectroscopy, J. Power Sources, 2020, vol. 470, p. 228285.
  15. Messing, M. and Kjeang, E., Empirical modeling of cathode electrode durability in polymer electrolyte fuel cells, J. Power Sources, 2020, vol. 451, p. 227750.
  16. Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., Tabachkova, N.Y., Safronenko, O.I., and Moguchikh, E.A., Pt/C-electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrog. Energy, 2018, vol. 43, p. 3676.
  17. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Lin, R., Tabachkova, N.Y., and Safronenko, O.I., Activity and Stability of Pt/C and Pt–Cu/C Electrocatalysts, Electrocatalysis, 2018, vol. 9, p. 550.
  18. Yano, H., Watanabe, M., Iiyama, A., and Uchida, H., Particle-size effect of Pt cathode catalysts on durability in fuel cells, Nano Energy, 2016, vol. 29, p. 323.
  19. Polymeros, G., Baldizzone, C., Geiger, S., Grote, J.P., Knossalla, J., Mezzavilla, S., Keeley, G.P., Cherevko, S., Zeradjanin, A.R., Schüth, F., and Mayrhofer, K.J.J., High temperature stability study of carbon supported high surface area catalysts—expanding the boundaries of exsitu diagnostics, Electrochim. Acta, 2016, vol. 211, p. 744.
  20. Wanga, S., Wanga, H., Huang, Ch., Ye, P., Luo, X., Ning, J., Zhong, Y., and Hu, Y., Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N, Appl. Catal. B: Environmental, 2021, vol. 298, p. 120512.
  21. Cheng, J., Li, Yu., Huang, X., Wang, Q., Mei, A., and Kang, P., Shen Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene like networks with hierarchical porous structures, J. Mater. Chem. A, 2015, vol. 3, p. 1492.
  22. Wang, W., Jia, Q., Mukerjee, S., and Chen, S., Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials, ACS Catal., 2019, vol. 9, p. 10126.
  23. Imran Jafri, R., Rajalakshmi, N., and Ramaprabhu, S., Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Mater. Chem., 2010, vol. 20, p. 7114.
  24. Mardle, P., Ji, X., Wu, J., Guan, S., Dong, H., and Du, S., Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells, Appl. Catal. B: Environmental, 2020, vol. 260, p. 118031.
  25. Hu, Y., Jensen, J.O., Zhang, W., Cleemann, L.N., Xing, W., Bjerrum, N.J., and Li, Q., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts, Angew. Chem. Int. Ed., 2014, vol. 53, p. 3675.
  26. Wang, H., Ye, W., Yang, Y., Zhong, Y., and Hu, Y., Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives, Nano Energy, 2021, vol. 85, p. 105942.
  27. Golovin, V.A., Maltseva, N.V., Gribov, E.N., and Okunev, A.G., New nitrogen-containing carbon supports with improved corrosion resistance for proton exchange membrane fuel cells. International, Int. J. Hydrog. Energy, 2017, vol. 42, p. 11159.
  28. Langford, J.I. and Wilson, A.J.C., Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, vol. 11, no. 102.
  29. Van der Vliet, D., Strmcnik, D.S., Wang, C., Stamenkovic, V.R., Markovic, N.M., and Koper, M.T.M., On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction, J. Electroanal. Chem., 2010, vol. 647, p. 29.
  30. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness, J. Electrochem. Soc., 2015, vol. 162, p. F1384.
  31. Pavlets, A., Alekseenko, A., Menshchikov, V., Belenov, S., Volochaev, V., Pankov, I., Safronenko, O., and Guterman, V., Influence of electrochemical pretreatment conditions of PtCu/C alloy electrocatalyst on its activity, Nanomat., 2021, vol. 6, p. 1499.
  32. Leontyev, I.N., Kuriganova, A.B., Leontyev, N.G., Hennet, L., Rakhmatullin, A., Smirnova, N.V., and Dmitriev, V., Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations, RSC Adv., vol. 4, no. 68, p. 35959.
  33. Riese, A., Banham, D., Ye, S., and Sun X., Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports, J. Electrochem. Soc., 2015, vol. 162, p. F783.
  34. Testing Wang, C., Ricketts, M., Soleymani, A.P., Jankovic, Ja., Waldecker, J., and Chen, J., Effect of Carbon Support Characteristics on Fuel Cell Durability in Accelerated Stress J. Electrochem. Soc., 2021, vol. 168, p. 044507.
  35. Forouzandeh, F., Li, X., Banham, D.W., Feng, F., Ye, S., and Birss, V., Understanding the Corrosion Resistance of Meso- and Micro-Porous Carbons for Application in PEM Fuel Cells, J. Electrochem. Soc., 2018, vol. 165, p. F3230.