Examples



mdbootstrap.com



 
Article
2018

Scheme of the Complex Formation of DNA Telomeric Sequence with TMPyP4 Porphyrine


A. G. KudrevA. G. Kudrev
Russian Journal of General Chemistry
https://doi.org/10.1134/S1070363218120198
Abstract / Full Text

The model of the complex formation in a DNA oligonucleotide solution in the presence of TMPyP4 porphyrine has been recognized using a matrix method basing on the experimentally observed composition-property features. The experimental data on UV spectroscopic titration of G4 Tel22 oligonucleotide by TMPyP4 porphyrine have been interpreted in terms of equilibrium complex formation of the ligand with the macromolecule at four independent binding sites (coordination vacancies). The suggested matrix model has considered the mutual influence of the ligands bound at each of the Tel22 coordination vacancies. Sequential attachment of the TMPyP4 ligand to the Tel22(TMPyP4)n complex has affected the shape of the UV absorption spectrum of the earlier bound ligands. The cross-validation of the conventional stepwise complex formation model and the matrix binding model has confirmed the validity of the new interpretation.

Author information
  • St. Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg, 190034, RussiaA. G. Kudrev
References
  1. Neidle, S. and Balasubramanian, S., Quadruplex Nucleic Acids, Cambridge: The Royal Society of Chemistry, 2006. doi https://doi.org/10.1039/9781847555298-00208
  2. Müller, J., Metallomics 2010, vol. 2, p. 318. doi https://doi.org/10.1039/C000429D
  3. Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K., and Neidle, S., Nucleic Acids Res. 2006, vol. 34, p. 5402. doi https://doi.org/10.1093/nar/gkl655
  4. Wong, H.M., Payet, L., and Huppert, J.L., Curr. Opin. Mol. Ther. 2009, vol. 11, p. 146. doi https://doi.org/10.1039/b702491f
  5. Murat, P., Singh, Y., and Defrancq, E., Chem. Soc. Rev. 2011, vol. 40, p. 5293. doi https://doi.org/10.1039/c1cs15117g
  6. Balasubramanian, S., Hurley, L.H., and Neidle, S., Nat. Rev. Drug Discov. 2011, vol. 10, p. 261. doi https://doi.org/10.1038/nrd3428
  7. Calvoa, E.P. and Wasserman, M., Mol. Biochem. Parasitol. 2016, vol. 207, p. 33. doi https://doi.org/10.1016/j.molbiopara.2016.05.009
  8. Li, Q., Xiang, J.-F., Yang, Q.-F., Sun, H.-X., Guan, A.-J., and Tang, Y.-L., Nucleic Acids Res. 2013, vol. 41, p. D1115. doi https://doi.org/10.1093/nar/gks1101
  9. Monchaud, D. and Teulade-Fichou, M.P., Org. Biomol. Chem. 2008, vol. 6, p. 627. doi https://doi.org/10.1039/b714772b
  10. De Cian, A., Lacroix, L., Douarre, C., Temime-Smaali, N., Trentesaux, C., Riou, J.F., and Mergny, J.L., Biochimie 2008, vol. 90, p. 131. doi https://doi.org/10.1016/j.biochi.2007.07.011
  11. Nagesh, N., Buscaglia, R., Dettler, J.M., and Lewis, E.A., Biophys. J. 2010, vol. 98, p. 2628. doi https://doi.org/10.1016/j.bpj.2010.02.050
  12. Monchaud, D., Granzhan, A., Saettel, N., Guedin, A., Mergny, J-L, and Teulade-Fichou, M-P., J. Nucl. Acids, 2010, vol. 2010. ID 525862. doi https://doi.org/10.4061/(2010)/525862
  13. Neidle, S., FEBS J., 2010, vol. 277, p. 1118. doi https://doi.org/10.1111/j.1742-4658.2009.07463.x
  14. Raju, G., Srinivas, R., Reddy, V.S., Idris, M.M., Kamal, A., and Nagesh, N., PLoS ONE, 2012, vol. 7, p. 35920. doi https://doi.org/10.1371/journal.pone.0035920
  15. Yaku, H., Murashima, T., Miyoshi, D., and Sugimoto, N., Chem. Commun. 2010, vol. 46, p. 5740. doi https://doi.org/10.1039/c0cc00956c
  16. Yaku, H., Fujimoto, T., Murashima, T., Miyoshi, D., and Sugimoto, N., Chem. Commun. 2012, vol. 48, p. 6203. doi https://doi.org/10.1039/c2cc31037f
  17. Yaku, H., Murashima, T., Miyoshi, D., and Sugimoto, N., Molecules 2012, vol. 17, p. 10586. doi https://doi.org/10.3390/molecules170910586
  18. Romera, C., Bombarde, O., Bonnet, R., Gomez, D., and Dumy, P., Biochimie 2011, vol. 93, no. 11, p. 1310. doi https://doi.org/10.1016/j.biochi.2011.06.008
  19. Martino. L., Pagano. B., I., Neidle. S., and Giancola. C., J. Phys. Chem. (B) 2009, vol. 113, p. 14779. doi https://doi.org/10.1021/jp9066394
  20. Morris, M.J., Wingate, K.L, Silwal, J., Leeper, T.C., and Basu, S., Nucl. Acids Res. 2012, vol. 40, p. 4137. doi https://doi.org/10.1093/nar/gkr1308
  21. Han, H., Langley, D.R., Rangan, A., and Hurley, L.H., J. Am. Chem. Soc., 2001, vol. 123, p. 8902. doi https://doi.org/10.1021/ja002179j
  22. Wie, C., Jia, G., Yuan, J., Feng, Z., and Li C., Biochem. 2006, vol. 45, p. 6681. doi https://doi.org/10.1021/bi052356z
  23. Cogoi, S., Paramasivam, M., Spolaore, B., and Xodo, L.E., Nucl. Acids Res. 2008, vol. 36, p. 3765. doi https://doi.org/10.1093/nar/gkn120
  24. Neidle, S., Curr. Opin. Struct. Biol. 2009, vol. 19, p. 239. doi https://doi.org/10.1016/j.sbi.2009.04.001
  25. Jia, G., Feng, Z., Wie, C., Zhou, J. X., and Li, C., J. Phys. Chem. (B), 2009, vol. 113, p. 16237. doi https://doi.org/10.1021/jp906060d
  26. Kudrev, A., Russ. J. Gen. Chem. 2016, vol. 86, p. 1353. doi https://doi.org/10.1134/S1070363216060219
  27. Chaires, J. B., Methods in Enzymology 2001, vol. 340, p. 3.
  28. Le Vu, H., Buscaglia, R., Chaires, J.B., and Lewis, E.A., Analyt. Biochem. 2013, vol. 434, p. 233. doi https://doi.org/10.1016/j.ab.2012.11.030
  29. Manaye, S., Eritja, R., Avinґo, A., Jaumot, J., and Gargallo, R., Biochim. Biophys. Acta 2012, vol. 1820, p. 1987. doi 101016/j.bbagen.2012.09.006
  30. Bhattacharjee, A.J., Ahluwalia, K., Taylor, S., Jin, O., Nicoludis, J.M., Buscaglia, R., and Chaires, J.B., Kornfilt, D.J.P., Marquardt, D.G.S., and Yatsunyk, L.A., Biochimie 2011, vol. 93, p. 1297. doi https://doi.org/10.1016/j.biochi.2011.05.038
  31. Bucek P., Gargallo R., and Kudrev A., Anal. Chim. Acta 2010, vol. 683, p. 69. doi https://doi.org/10.1016/j.aca.2010.10.008
  32. Kudrev, A.G., Russ. J. Gen. Chem. 2002, vol. 72, p. 1501. doi https://doi.org/10.1023/A:1023315112622
  33. Kudrev, A.G., Russ. J. Gen. Chem. 2006, vol. 76, p. 1782. doi https://doi.org/10.1134/S107036320611020X
  34. Kudrev, A.G., Talanta 2013, vol. 116, p. 541. doi https://doi.org/10.1016/j.talanta.2013.07.01
  35. Kudrev A.G., Polym. Sci. (A) 2013, vol. 55, p. 586. doi https://doi.org/10.1134/S0965545X13090022
  36. Kudrev, A.G., Russ. J. Gen. Chem. 2014, vol. 84. N 3, p. 424. doi https://doi.org/10.1134/S1070363214030037
  37. Kudrev A., J. Anal. Meth. Chem., 2017, vol. 2017, Article ID 6780521. doi https://doi.org/10.1155/2017/6780521
  38. Haq, I., Trent, J.O., Chowdhry, B.Z., and Jenkins, T.C., J. Am. Chem. Soc., 1999, vol. 121, p. 1768. doi https://doi.org/10.1021/ja981554t
  39. Han, H., Langley, D.R., Rangan, A., and Hurley, L.H., J. Am. Chem. Soc. 2001, vol. 123, p. 8902. doi https://doi.org/10.1021/ja002179j
  40. Gray, R.D., Li, J., and Chaires, J.B., J. Phys. Chem. (B), 2009, vol. 113, p. 2676. doi https://doi.org/10.1021/jp809578f
  41. Wei, C., Jia, G., Zhou, J., Han, G., and Li, C., Phys. Chem. Chem. Phys. 2009, vol. 11, p. 4025. doi https://doi.org/10.1039/b901027k
  42. Ruan, T.L., DaVis, S.J., Powell, B.M., Harbeck, C.P., Habdas, J., Habdas, P., and Yatsunyk, L.A., Biochimie 2017, vol. 132, p. 121. doi https://doi.org/10.1016/j.biochi.2016.11.003
  43. Parkinson, G.N., Ghosh, R., and Neidle, S., Biochem. 2007, vol. 46, p. 2390. doi https://doi.org/10.1021/bi062244n
  44. DuPont, J.I., Henderson, K.L., Metz, A., Le, V.H., Emerson, J.P., and Lewis, E.A., Biochim. Biophys. Acta 2016, vol. 1860 P. 902. doi https://doi.org/10.1016/j.bbagen.2015.09.004
  45. Gao, Y. and Guanga, T., X., RSC Adv., 2017, vol. 7, p. 55098. doi https://doi.org/10.1039/C7RA07758K
  46. Job, P., Ann. Chim. 1928, vol. 9, p. 113.
  47. Klotz, I.M., Science 1982, vol. 217, p. 1247. doi https://doi.org/10.1126/science.6287580
  48. Schwarz, G., Biophys. Struct. Mechanism. 1976, vol. 2, p. 1.
  49. Marquardt, D.W., J. Soc. Ind. Appl. Math., 1963, vol. 2, p. 431.