Article
2021

Transport Properties of LiClO4–Nanodiamond Composites


D. V. Alekseev D. V. Alekseev , Yu. G. Mateyshina Yu. G. Mateyshina , N. F. Uvarov N. F. Uvarov
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521100037
Abstract / Full Text

Abstract—

The transport properties of solid composite electrolytes (1 – x)LiClO4xCND (where СND are “UDA-S” nanodispersed diamonds with a specific surface area Ssp = 300 ± 20 m2/g, 0 < x < 1) are studied. It is found that an addition of CND leads to an increase of the composite conductivity (σ) by 3–5 orders of magnitude to 8 × 10–4 S/cm at T = 100°C at x = 0.9. The experimental data in the concentration range 0.1 < x < 0.8 at the temperatures of 50–200°C are described by the theoretical dependences, which ore obtained using the modified mixing equation. Using the method of cycling voltammetry in the E/0.2LiClO4–0.8CND/E cells (where E is Ag, Cu, Ni, and graphite), it is shown that this composite solid electrolyte is electrochemically stable in the voltage range up to 3.5 V. By the examples of solid-state supercapacitor C/0.2LiClO4–0.8CND/C and solid-state lithium-ion battery LiMn2O4/0.2LiClO4–0.8CND/LiMn2O4, it is shown that, in principle, the composite solid electrolytes with the nanodiamond additives can be used in the electrochemical devices. Thus, it is demonstrated that nanodispersed diamonds can be considered as an effective non-oxide additive in the composite solid electrolytes based on lithium perchlorate.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia

    D. V. Alekseev, Yu. G. Mateyshina & N. F. Uvarov

  • Novosibirsk State University, Novosibirsk, Russia

    D. V. Alekseev, Yu. G. Mateyshina & N. F. Uvarov

  • Novosibirsk State Technical University, Novosibirsk, Russia

    Yu. G. Mateyshina & N. F. Uvarov

  • Surgut State University, Surgut, Russia

    Yu. G. Mateyshina

References
  1. Lukatskaya, M.R., Mashitalir, O., Ren, C.E., Dall’Agnese, Y., Rozier P., Taberna, P.L., Naguib, M., Simon, P., Barsoum, M.W., and Gogotsi, Y., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 2013, vol. 341, p. 1502.
  2. Torchala, K., Kierzek, K., and Machnikowski, J., Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes, Electrochim. Acta, 2012, vol. 86, p. 260.
  3. Narayanan, R. and Bandaru, P.R., High rate capacity through redox electrolytes confined in macroporous electrodes, J. Electrochem. Soc., 2015, vol. 162, p. 86.
  4. Gonzalez, A., Goikolea, E., Barrena, J.A., and Mysyk, R., Review on supercapacitors: technologies and materials, Renewable Sust. Energy Rev., 2016, vol. 58, p. 206.
  5. Simon, P. and Gogotsi, Y., Capacitive energy storage in nanostructured carbon–electrolyte systems, Acc. Chem. Res., 2013, vol. 46, p. 1094.
  6. Vellacheri, R., Al-Haddad, A., Zhao, H., Wang, W., Wang, C., and Lei, Y., High performance supercapacitor for efficient energy storage under extreme environmental temperatures, Nano Energy, 2014, vol. 8, p. 231.
  7. Hikmet, R.A.M., Organic electrolytes and electrodes for batteries, in Encyclopedia of Materials: Science and Technology, Buschow, K.H.J. and Merton, C., Eds., Amsterdam: Elsevier, 2001, p. 6534.
  8. Yarmolenko, O.V., Yudina, A.V., and Ignatova, A.A., The state-of-the-art and prospects for the development of electrolyte systems for lithium power sources, Electrochem. Energy, 2016, vol. 16, p. 155.
  9. Van Aken, K.L., Beidaghi, M., and Gogotsi, Y., Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors, Angew. Chem., 2015, vol. 54, p. 4806.
  10. Abbas, Q., Mirzaeian, M., Olabi, A.G., and Gibson, D., Solid state electrolytes, in Reference Module in Materials Science and Materials Engineering, Paisley: Elsevier, 2020, p. 1.
  11. Yi, C., Liu, W., Li, L., Dong, H., and Liu, J., Polymer-in-salt solid electrolytes for lithium-ion batteries, Funct. Mater. Lett., 2019, vol. 12, no. 6.
  12. Zhukovskii, V.M., Bushkova, O.V., Lirova, B.I., Tyutyunnik, A.P., and Animitsa, I.E., Problem of fast ionic transport in solid polymer electrolytes, Russ. J. Gen. Chem., 2001, vol. 45, p. 35.
  13. Wu, Z., Xie, Z., Yoshida, A., Wang, Z., Hao, X., Abudula, A., and Guan, G., Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review, Renewable Sust. Energy Rev., 2019, vol. 109, p. 367.
  14. Ivanov-Shitz, A.K. and Murin, I.V., Solid State Ionics, St. Petersburg: St. Petersburg Univ., 2010.
  15. Uvarov, N.F., Composite Solid Electrolytes, Novosibirsk: Russian Academy of Sciences, Siberian Branch, 2008.
  16. Liang, C.C., Conduction characteristics of the lithium iodide–aluminum oxide solid electrolytes, J. Electrochem. Soc., 1973, vol. 120, p. 1289.
  17. Chen, L., Composite solid electrolytes, in Materials for Solid State Batteries, Chowdhari, B.V.R. and Radhakrishna, S., Eds., New York: World Sci. Publ., 1986, p. 69.
  18. Uvarov, N.F., Strivastava, O.P., and Hairetdinov, E.F., Composite solid electrolytes in the Li2SO4–Al2O3 system, Solid State Ionics, 1989, vol. 36, p. 39.
  19. Uvarov, N.F., Hairetdinov, E.F., and Skobelev, I.V., Composite solid electrolytes MeNO3–Al2O3 (Me = Li, Na, K), Solid State Ionics, 1996, vol. 86, p. 577.
  20. Bekaert, E., Buannic, L., Lassi, U., Llordés, A., and Salminen, J., Electrolytes for Li- and Na-Ion batteries: concepts, candidates, and the role of nanotechnology, in Emerging Nanotechnologies in Rechargeable Energy Storage Systems, Rodriguez-Martinez, L.M. and Omar, N., Eds., Amsterdam: Elsevier, 2017, p. 43.
  21. Ulihin, A.S., Uvarov, N.F., Harlamova, O.A., and Isupov, V.P., Effect of oxide additive on the physicochemical properties of composite solid electrolytes based on LiClO4, Tez. dokl. mezhdunar. konf. “Fundamental’nye problemy elektrokhimicheskoi energetiki” (Proc. Int. Conf. “Fundamental Problems of Electrochemical Power Engineering”), Saratov: Saratov State Univ., 2005, p. 387.
  22. Uvarov, N.F., Ulihin, A.S., and Mateyshina, Yu.G., in Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications, Sadykov, V.A., Ed., Amsterdam: Elsevier, 2019, ch. 11, p. 393.
  23. Alekseev, D.V., Mateyshina, Y.G., Komarov, V.Y., Sevast’yanova, E.V., and Uvarov, N.F., Synthesis and characterization of solid composite electrolytes LiClO4–nanodiamonds, Mater. Today: Proc., 2020, vol. 31, p. 576.
  24. Maier, J., Heterogeneous solid electrolytes, in Superionic Solids and Solid Electrolytes: Recent Trends, Chandra, S. and Laskar, A., Eds., New York: Academic Press, 1989, p. 137.
  25. Ulihin, A., Uvarov, N., Mateyshina, Y., Brezhneva, L., and Matvienko, A., Composite solid  electrolytes LiClO4–Al2O3, Solid State Ionics, 2006, vol. 177, p. 2787.
  26. Centeno, T.A., Hahn, M., Fernández, J.A., Kötz, R., and Stoeckli, F., Correlation between capacitances of porous carbons in acidic and aprotic EDLC electrolytes, Electrochem. Commun., 2007, vol. 9, p. 1242.