Article
2020
Abstract / Full Text

The effects of the Y2O3 and Yb2O3 co-doping impurities on the transport characteristics and stabilization of the cubic phase in solid solutions based on ZrO2–Sc2O3 were compared. The crystals of the (ZrO2)0.99 –x(Sc2O3)x(Yb2O3)0.01 and (ZrO2)0.99 –x(Sc2O3)x(Y2O3)0.01 (x = 0.08–0.10) solid solutions were grown by directed crystallization of the melt in a cold container. The high-temperature cubic phase was stabilized at a total concentration of stabilizing oxides of 11 mol % for (ZrO2)0.99 –x(Sc2O3)x(Y2O3)0.01 crystals and at 10 mol % for (ZrO2)0.99 –x(Sc2O3)x(Yb2O3)0.01 crystals. At (9–10) mol % scandium oxide, the high-temperature conductivity of the crystals co-doped with ytterbium oxide was higher than in the case of the crystals co-doped with yttrium oxide. The (ZrO2)0.9(Sc2O3)0.09(Yb2O3)0.01 crystals have maximum conductivity over the whole temperature range.

Author information
  • Prokhorov Institute of General Physics, Russian Academy of Sciences, 119991, Moscow, Russia

    E. E. Lomonova, M. A. Borik, A. V. Kulebyakin, V. A. Myzina, V. V. Osiko, A. S. Chislov & N. Yu. Tabachkova

  • Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    D. A. Agarkov, G. M. Eliseeva & I. E. Kuritsyna

  • Moscow Institute of Physics and Technology (National Research University), 117303, Dolgoprudnyi, Moscow oblast, Russia

    D. A. Agarkov

  • National University of Science and Technology MISiS, 119049, Moscow, Russia

    F. O. Milovich, A. S. Chislov & N. Yu. Tabachkova

References
  1. Badwal, S.P.S., Ciacchi, F.T., and Milosevic, D., Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation, Solid State Ionics, 2000, vol. 136, p. 91.
  2. Kumar, A., Jaiswal, A., Sanbui, M., and Omar, S., Oxygen-ion conduction in scandia-stabilized zirconia-ceria solid electrolyte (xSc2O3–1CeO2–(99–x)ZrO2, 5 ≤ x ≤ 11), J. Am. Ceram. Soc., 2016, p. 1.
  3. Stricker, D.W. and Carlson, W.G., Electrical conductivity in the ZrO2-rich region of several M2O3–ZrO2 systems, J. Am. Ceram. Soc., 1965, vol. 48, p. 286.
  4. Borik, M.A., Bredikhin, S.I., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Panov, V.A., Ryabochkina, P.A., Seryakov, S.V., and Tabachkova, N.Yu., Melt growth, structure and properties of (ZrO2)1 –x(Sc2O3)x solid solution crystals (x = 0.035–0.11), J. Cryst. Growth, 2016, vol. 443, p. 54.
  5. Yamamura, H., Matsusita, T., Nishino, H., and Kakinuma, K., Co-doping effect on electrical conductivity in the fluorite-type solid-solution systems Zr0.7(Sc1 –xMx)0.3O2 – δ (M = Ca, Mg, Al, Gd, Yb), J. Mater. Sci.: Mater. Electron., 2002, vol. 13, p. 57.
  6. Lee, D.-S., Kim, W.S., Choi, S.H., Kim, J., Lee, H.-W., and Lee, J.-H. Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for application of intermediate temperature SOFCs, Solid State Ionics, 2005, vol. 176, p. 33.
  7. Omar, S., Najib, W.B., Chen, W., and Bonanos, N., Electrical conductivity of 10 mol % Sc2O3–1 mol % M2O3–ZrO2 ceramics, J. Am. Ceram. Soc., 2012, vol. 95, p. 1965.
  8. Chiba, R., Ishii, T., and Yoshimura, F., Temperature dependence of ionic conductivity in (1 – x)ZrO2–(xy) Sc2O3–yYb2O3 electrolyte material, Solid State Ionics, 1996, vol. 91, p. 249.
  9. Spirin, A. Ivanov, V., Nikonov, A., Lipilin, A., Paranin, S., Khrustov, V., and Spirina A., Scandia-stabilized zirconia doped with yttria: Synthesis, properties, and ageing behavior, Solid State Ionics, 2012, vol. 225, p. 448.
  10. Omar, S. and Bonanos, N., Ionic conductivity ageing behaviour of 10 mol % Sc2O3–1 mol % CeO2–ZrO2 ceramics, J. Mater. Sci., 2010, vol. 45, p. 6406.
  11. Arachi, Y., Sakai, H., Yamamoto, O., Takeda, Y., and Imanishai, N., Electrical conductivity of the ZrO2–Ln2O3 (Ln-lanthanides) system, Solid State Ionics, 1999, vol. 121, p. 133.
  12. Kilner, J.A. and Brook, R.J., A study of oxygen ion conductivity in doped non-stoichiometric oxides, Solid State Ionics, 1982, vol. 6, p. 237.
  13. Zacate, M.O., Minervini, L., Bradfield, D.J., Grimes, R.W., and Sickafus, K.E., Defect cluster formation in M2O3 doped cubic ZrO2, Solid State Ionics, 2000, vol. 128, p. 243.
  14. Osiko, V.V., Borik, M.A., and Lomonova, E.E., Synthesis of refractory materials by skull melting technique, Springer Handbook of Crystal Growth, 2010, Part B, p. 433.
  15. Agarkov, D.A., Burmistrov, I.N., Tsybrov, F.M., Tartakovskii, I.I., Kharton, V.V., and Bredikhin, S.I., In-situ Raman spectroscopy analysis of the interfaces between Ni-based SOFC anodes and stabilized zirconia electrolyte, Solid State Ionics, 2017, vol. 302, p. 133.
  16. Agarkov, D.A., Burmistrov, I.N., Tsybrov, F.M., Tartakovskii, I.I., Kharton, V.V., and Bredikhin, S.I., Kinetics of NiO reduction and morphological changes in composite anodes of solid oxide fuel cells: Estimate using Raman scattering technique, Russ. J. Electrochem., 2016, vol. 52, p. 600.
  17. Agarkov, D.A., Burmistrov, I.N., Tsybrov, F.M., Tartakovskii, I.I., Kharton, V.V., Bredikhin, S.I., and Kveder, V.V., Analysis of interfacial processes at the SOFC electrodes by in-situ Raman spectroscopy, ECS Trans., 2015, vol. 68(1), p. 2093.
  18. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., V.A., Osiko, V.V., Ryabochkina, P.A., Seryakov, S.V., and Tabachkova, N.Yu., Phase composition, structure and properties of (ZrO2)1 –xy(Sc2O3)x(Y2O3)y solid solution crystals (x = 0.08–0.11; y = 0.01–0.02) grown by directional crystallization of the melt, J. Cryst. Growth, 2017, vol. 457, p. 122.
  19. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, Ph.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., and Tabachkova, N.Y., Structure and conductivity of yttria and scandia-doped zirconia crystals grown by skull melting, J. Am. Ceram. Soc., 2017, vol. 100, p. 5536.
  20. Fujimori, H., Yashima, M., Kakihana, M., and Yoshimura, M., Structural changes of scandia-doped zirconia solid solutions: Rietveld analysis and Raman scattering, J. Am. Ceram. Soc., 1998, vol. 81, p. 2885.
  21. Fujimori, H., Yashima, M., Kakihana, M., and Yoshimura M., β-cubic phase transition of scandia-doped zirconia solid solution: Calorimetry, X-ray diffraction, and Raman scattering, J. Appl. Phys., 2002, vol. 91, p. 6493.
  22. Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H., and Yoshimura, M., Oxygen-induced structural change of the tetragonal phase around the tetragonal-cubic phase-boundary in ZrO2–YO1.5 solid-solutions, Acta Crystallogr., Sect. B: Struct. Sci., 1994, vol. 50, p. 663.
  23. Yashima, M., Ohtake, K., Kakihana, M., Arashi, H., and Yoshimura, M., Determination of tetragonal-cubic phase boundary of Zr1 –xRxO2 –x/2 (R = Nd, Sm, Y, Er and Yb) by Raman scattering, J. Phys. Chem. Solids, 1996, vol. 57, p. 17.
  24. Lipkin, D.M., Krogstad, J.A, Gao, Y., Johnson, C.A., Nelson, W.A., and Levi, C.G., Phase evolution upon aging of air plasma spray t'-zirconia coatings: I—synchrotron X-ray diffraction, J. Am. Ceram. Soc., 2013, vol. 96, p. 290.
  25. Hemberger, Y., Wichtner, N., Berthold, Ch., and Nickel, K.G., Quantification of yttria in stabilized zirconia by Raman spectroscopy, Int. J. Appl. Ceram. Technol., 2016, vol. 13, p. 116.
  26. Agarkov, D.A., Borik, M.A., Bublik, V.T., Bredikhin, S.I., Chislov, A.S., Kulebyakin, A.V., Kuritsyna, I.E., Lomo-nova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., and Tabachkova, N.Yu., Structure and transport properties of melt grown Sc2O3 and CeO2 doped ZrO2 crystals, Solid State Ionics, 2018, vol. 322, p. 24.