Petroleum Coke as the Active Material for Negative Electrodes in Lithium–Sulfur Batteries

E. V. Kuz’mina E. V. Kuz’mina , E. V. Karaseva E. V. Karaseva , N. V. Chudova N. V. Chudova , A. L. Ivanov A. L. Ivanov , V. S. Kolosnitsyn V. S. Kolosnitsyn
Russian Journal of Electrochemistry
Abstract / Full Text

The possibility of using carbon materials based on petroleum coke as the cheap and available active material for negative electrodes of lithium–sulfur rechargeable batteries is considered. The comparative studies of characteristics of lithium–sulfur cells with negative electrodes based on metal lithium, graphite, and petroleum coke are carried out. It is found that heat-treated petroleum coke can be successfully used as the active material for negative electrode of lithium–sulfur batteries with acceptable energy characteristics. All other conditions being the same, the lithium–sulfur cells with negative electrodes based on petroleum coke demonstrate the longer cyclability as compared with cells based on metal lithium or graphite. This is explained by the slower destruction of electrolyte components on the negative electrode during cycling of lithium–sulfur cells. It is shown that the use of negative electrodes based on petroleum coke in lithium–sulfur batteries allows their cyclability to be increased and their cost to be reduced.

Author information
  • Ufa Institute of Chemistry UFRC RAS, 450054, Ufa, Russia

    E. V. Kuz’mina, E. V. Karaseva, N. V. Chudova, A. L. Ivanov & V. S. Kolosnitsyn

  1. Fan, L., Deng, N., Yan, J., Li, Z., Kang, W., and Cheng, B., The recent research status quo and the prospect of electrolytes for lithium sulfur batteries, Chem. Eng. J., 2019, vol. 369, p. 874.
  2. Wang, H.C., Cao, X., Liu, W., and Sun, X., Research progress of the solid state lithium–sulfur batteries, Front. Energy Res., 2019, no. 112.
  3. Liang, X., Yun, J., Wang, Y., Xiang, H., Sun, Y., Feng, Y., and Yu, Y., A new high-capacity and safe energy storage system: lithium-ion sulfur batteries, Nanoscale, 2019, vol. 11, no. 19140.
  4. Li, F., Liu, Q., Hu, J, Feng, Y., He, P., and Ma, J., Recent advances in cathode materials for rechargeable lithium–sulfur batteries, Nanoscale, 2019, vol. 11, no. 15418.
  5. Zeng, P., Han, Y., Duan, Z., Jia, G., Huang, L., and Chen, Y., A stable graphite electrode in superconcentrated LiTFSI-DME/DOL electrolyte and its application in lithium-sulfur full battery, Mater. Res. Bull., 2017, vol. 95, p. 61.
  6. Xiong, X., Yan, W., You, C., Zhu, Y., Chen, Y., Fu, L., Zhang, Y., Yu, N., and Wu, Y., Methods to improve lithium metal anode for Li–S batteries, Front. Chem., 2019, vol. 7, article 827.
  7. Fu, Y., Su, Y.S., and Manthiram, A., Li2S–carbon sandwiched electrodes with superior performance for lithium–sulfur batteries, Adv. Energy Mater., 2014, vol. 4, no. 1300655.
  8. Wu, Y., Momma, T., Yokoshima, T., Nara, H., and Osaka, T., High performance sulfur graphite full cell for next generation sulfur Li-ion battery, J. Power Sources, 2018, vol. 388, p. 5.
  9. Shi, P., Zhou, X., Wang, Y., Liang, X., Sun,Y., Cheng, S., Chen, C., and Xiang, H., Advanced lithium ion sulfur battery based on spontaneous electrochemical exfoliation/lithiation of graphite in nonaqueous electrolytes, ACS Appl. Energy Mater., 2019, vol. 2, no. 5, p. 3798.
  10. Karaseva, E. and Kolosnitsyn, V., Patent EP 1 867 000 B1, Eur. Pat. Bul., 2011, vol. 40.
  11. Liu, J., Nara, H., Yokoshima, T., Momma, T., and Osaka, T., Micro-scale Li2S–C composite preparation from Li2SO4 for cathode of lithium ion battery, Electrochim. Acta, 2015, vol. 183, p. 70.
  12. Li, Z., Zhang, S., Zhang, C., Ueno, K., Yasuda, T., Tatara, R., Dokko, K., and Watanabe, M., One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li2S/graphene composite for lithium–sulfur batteries, Nanoscale, 2015, vol. 7, p. 14385.
  13. Ye, F., Noh, H., Lee, J., Lee, H., and Kim, H.-T., Li2S/carbon nanocomposite strips from a low-temperature conversion of Li2SO4 as high-performance lithium–sulfur cathodes, J. Mater. Chem. A, 2018, vol. 6, p. 6617.
  14. Shi, J., Zhang, J., Zhao, Y., Yan, Z., Hart, N., and Guo, J., Synthesis of Li2S–carbon cathode materials via carbothermic reduction of Li2SO4, Front. Energy Res., 2019, vol. 7, no. 53.
  15. Karaseva, E.V., Sheina, L.V., and Kolosnitsyn, V.S., Synthesis of lithium sulfide by carbothermic reduction of lithium sulfate with petroleum coke, Russ. J. App. Chem., 2021, vol. 94, no. 1, p. 5.
  16. Wang, C., Cai, W., Li, G., Liu, B., and Li, Z., In-situ synthesis of Li2S-loaded amphiphilic porous carbon and modification of Li2S electrode for long-life Li2S battery, ChemElectroChem, 2018, vol. 5, no. 1, p. 112.
  17. Chae, S., Choi, S.-H., Kim, N., Sung, J., and Cho, J., Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 2019, vol. 59, no. 1, p. 110.
  18. Borah, R., Hughson, F.R., Johnston, J., and Nann, T., On battery materials and methods, Mater. Today: Advances, 2020, vol. 6, no. 100046.
  19. Buiel, E. and Dahn, J.R., Li-insertion in hard carbon anode materials for Li-ion batteries, Electrochim. Acta, 1999, vol. 45, no. 1–2, p. 121.
  20. Väli, R., Jänes, A., Thomberg, T., and Lust, E., Synthesis and characterization of D-glucose derived nanospheric hard carbon negative electrodes for lithium- and sodium-ion batteries, Electrochim. Acta, 2017, vol. 253, p. 536.
  21. Sun, H., He, X., Ren, J., Li, J., Jiang, C., and Wan, C., Hard carbon/lithium composite anode materials for Li-ion batteries, Electrochim. Acta, 2007, vol. 52, no. 13, p. 4312.
  22. Zhang, J., Liu, X., Wang, J., Shi, J., and Shi, Z., Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors, Electrochim. Acta, 2016, vol. 187, p. 134.
  23. Kim, J.-H., Kim, J.-S., Lim, Y.-G., Lee, J.-G., and Kim, Y.-J., Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors, J. Power Sources, 2011, vol. 196, no. 23, p. 10490.
  24. Gourdin, G., Smith, P.H., Jiang, T., Tran, T.N., and Qu, D., Lithiation of amorphous carbon negative electrode for Li-ion capacitor, J. Electroanalyt. Chem., 2013, vol. 688, p. 103.
  25. Li, B., Zheng, J., Zhang, H., Jin, L., Yang, D., Lv, H., Shen, C., Shellikeri, A., Zheng, Y., Gong, R., Zheng, J.P., and Zhan, C., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors, Adv. Mater., 2018, vol. 30, no. 1705670.
  26. Kuz’mina, E.V., Dmitrieva, L.R., Karaseva, E.V., and Kolosnitsyn, V.S., On the possibility of applying the dye sorption method to determine the specific surface area of carbon materials for lithium–sulfur batteries, Izv. Ufim. Nauch. Tsentra RAN, (in Russian) 2020, no. 2, p. 29.
  27. Kuzmina, E., Karaseva, E., Ivanov, A., and Kolosni-tsyn, V., On the factors affecting aging and self-discharge of lithium–sulfur cells. Effect of positive electrode composition, Energy Technol., 2019, no. 1900134.
  28. Mochalov, S.E., Antipin, A.V., Nurgaliev, A.R., and Kolosnitsyn, V.S., Multichannel potentiostat-galvanostat for cycling of batteries and electrochemical cells, Elektrokhim. Energ., 2015, no. 1(15), p. 45.
  29. Kolosnistyn, D.V., RF Inventor’s Certificate no. 2019611773, 2019.
  30. Kolosnitsyn, D.V., Kuz’mina E.V., and Karaseva, E.V., Data processing automatization of electrochemical studies of battery cells, Elektrokhim. Energ., 2019, no. 19(4), p. 186.
  31. Kolosnitsyn, D.V., RF Inventor’s Certificate no. 2019611983, 2019.
  32. Kuzmina, E., Chudova, N., Prosochkina, T., Karaseva, E., and Kolosnitsyn, V., Electrochemical properties of petroleum coke as active material of negative electrode in lithium batteries, Abstracts of Papers, 235th ECS Meeting, Dallas, 2019, abstract no. MA2019-01 236. MA2019-01/2/236.abstract?sid=9872a494-ecdb-4c30-91f2-8860f1c27031.
  33. Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., and Tascón, J.M.D., Raman microprobe studies on carbon materials, Carbon, 1994, vol. 32, no. 8, p. 1523.
  34. Tikhomirov, S. and Kimstach, T., Spectroscopy of Raman scattering is a promising method for the investigation of carbon nanomaterials, Analitika, 2011, no. 1(1), p. 28.
  35. Khabibullina, I.A., Sitnikov, N.N., Kazakov, V.A., and Sigalaev, S.K., Simultaneous thermal analysis and Raman spectroscopy as complementary methods of diagnostics of carbon allotropic forms, Izv. Vyssh. Uchebn. Zaved.: Khim. Khim. Tekhnol., 2016, no. 59(8), p. 34.
  36. Panteleeva, M.V., Description of Raman spectroscopy of light scattering in disordered carbon structure, Obrasov. Nauka Rossii za Rubezhom (in Russian), 2018, no. 42(7), p. 130.
  37. Kim, J.-H., Kim, J.-S., Lim, Y.-G., Lee, J.-G., and Kim, Y.-J., Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors, J. Power Sources, 2011, vol. 196, p. 10490.
  38. Yuan, M., Liu, W., Zhu, Y., and Xu, Y., Electrochemical performance of lithium ion capacitors with different types of negative electrodes, Russ. J. Electrochem., 2014, vol. 50, p. 594. .
  39. Dubasova, V.S., Fialkov, A.S., Kanevsky, L.S., Mikhailova, V.A., Nikolenko, A.F., Ponomareva, T.A., Zaichikov, S.G., Baver, A.I., and Smirnova, T.Yu., Electrochemical characteristics of the negative electrode in lithium-ion batteries: Effect of structure and surface properties of the carbon material, Russ. J. Electrochem., 2004, vol. 40, p. 369.