Article
2021

Synthesis, Characterization, Electrochemical and Antimicrobial Studies of Iron(II) and Nickel(II) Macrocyclic Complexes


 Vinod Kumar Vashistha Vinod Kumar Vashistha , Anuj Kumar Anuj Kumar , Prashant Tevatia Prashant Tevatia , Deepak Kumar Das Deepak Kumar Das
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521040091
Abstract / Full Text

Herein, we synthesized [12] membered pyridine based transition metal macrocyclic complexes [MIILCl2] (M = Fe(II) and Ni(II), L = 6,12,5,11-tetraphenyl di(2-pyridyl)[b,h][1,4,7,10]-N4[12]annulene). The synthesized macrocycles were characterized by using microanalysis (C, H, and N), DTA/TGA and other spectroscopic techniques. A nonplanar saddle-shaped octahedral geometry was assigned to the macrocycles. The TGA results indicated the higher stability of these macrocycles over 250°C temperature. Cyclic volumetric studies showed the abnormal quasi-reversible behavior for these complexes, which further indicates the unusual oxidation state on metal ions. In addition, these macrocyclic complexes possess good antimicrobial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal against C. albicans when compared with Gentamycin.

Author information
  • Department of Chemistry, GLA University, 281406, Mathura, Uttar Pradesh, India

    Vinod Kumar Vashistha, Anuj Kumar & Deepak Kumar Das

  • Beijing University of Chemical Technology, 100029, Beijing, China

    Anuj Kumar

  • Department of Chemistry, Gurukul Kangri University, Haridwar, India

    Prashant Tevatia

References
  1. Kumar, A., Zhang, Y., Liu, W., and Sun, X., The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction, J. Coord. Chem., 2020, vol. 402, p. 213047.
  2. Fabbrizzi, L., Coplanar coordination of the smallest tetraaza macrocycle: low-spin 1,4,7,10-tetraazacyclododecane nickel(II), Inorg. Chem., 1977, vol. 16, p. 2667.
  3. Sarma, M., Chatterjee, T., and Das, S.K., Inorganic-organic hybrid materials based on Co(III) tetra-aza-macrocyclic complexes and Lindqvist type poly-oxo anions: synthesis, characterization and spectroscopy of [CoIII(L)(NO2)2]2[Mo6O19] and [CoIII(L)(NCS)2]2[W6O19] · 2CH3CN (L = Transdiene), J. Mol. Struct., 2011, vol. 1004, p. 31.
  4. Lindoy, L.F., The Chemistry of Macrocyclic Ligand Complexes, Cambridge Univ. Press, 1990.
  5. Sweety, Vashistha, V.K., Kumar, A., and Singh, R., Synthesis, electrochemical and antimicrobial studies of Me6-dibenzotetraazamacrocyclic complexes of Ni(II) and Cu(II) metal ions, Russ. J. Electrochem., 2019, vol. 55, p. 161.
  6. Lindoy, L.F., Park, K.M., and Lee, S.S., Chem. Soc. Rev., 2013, vol. 42. p. 1713.
  7. Chandra, S. and Gupta, K., Chromium(III), manganese(II), iron(III), cobalt(II), nickel(II) and copper(II) complexes with a pentadentate, 15-membered new macrocyclic ligand, Trans. Metal. Chem., 2002, vol. 27, p. 196.
  8. Drahoš, B., Kotek, J., Hermann, P., Lukeš, I., and Tóth, É., Mn2+ complexes with pyridine-containing 15-membered macrocycles: thermodynamic, kinetic, crystallographic, and 1H/17O relaxation studies, Inorg. Chem., 2010, vol. 49, p. 3224.
  9. Liu, J., Lu, T.B., Deng, H., Ji, L.N., Qu, L.H., and Zhou, H.J., Synthesis, DNA-binding and cleavage studies of macrocyclic copper(II) complexes, Trans. Metal. Chem., 2003, vol. 28, p. 116.
  10. Shanker, K., Rohini, R., Ravinder, V., Reddy, P.M., and Ho, Y., Ru(II) complexes of N4 and N2O2 macrocyclic Schiff base ligands: their antibacterial and antifungal studies, Spectrochim. Acta A, 2009, vol. 73, p. 205.
  11. Geeta, B., Shravankumar, K., Reddy, P.M., Ravikrishna, E., Sarangapani, M., Reddy, K.K., and Ravinder, V., Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity, Spectrochim. Acta A, 2010, vol. 77, p. 911.
  12. Valente, P., Lincoln, S.F., and Wainwright, K., External coordination of europium(III) prior to its encapsulation within a cyclen-based pendant donor macrocycle, Inorg. Chem., 1998, vol. 37, p. 2846.
  13. Kumar, A. and Vashistha, V.K., Design and synthesis of CoIIHMTAA-14/16 macrocycles and their nano-composites for oxygen reduction electrocatalysis, RSC Adv., 2019, vol. 9, p. 13243.
  14. Kumar, A., Vashistha, V.K., Tevatia, P., and Singh, R., Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes, Spectrochim. Acta A, 2017, vol. 176, p. 123.
  15. Shakir, M., Varkey, S.P., and Kumar, D., Binuclear transition metal complexes of Schiff base macrocycles containing the furanyl moiety, Synth. React. Inorg. M, 1994, vol. 24, p. 941.
  16. Chandra, S., Gupta, N., and Gupta, R., Novel copper(II) homobinuclear macrocyclic complexes: cyclic voltammetry, biological properties and spectral studies, Spectrochim. Acta A, 2006, vol. 63, p. 587.
  17. Drahos, B., Herchel, R., and Travnicek, Z., Structural, magnetic, and redox diversity of first-row transition metal complexes of a pyridine-based macrocycle: well-marked trends supported by theoretical DFT calculations, Inorg. Chem., 2015, vol. 54, p. 3352.
  18. Sharma, V., Vashistha, V.K., and Das, D.K., Biological and electrochemical studies of macrocyclic complexes of iron and cobalt, Biointerface Res. Appl., 2020, Vol. 11, p. 7393.
  19. Antal, P., Drahoš, B., Herchel, R., and Trávníček, Z., Structure and magnetism of seven-coordinate FeIII, FeII, CoII and NiII complexes containing a heptadentate 15-membered pyridine-based macrocyclic ligand, Eur. J. Inorg. Chem., 2018, vol. 2018, p. 4286.
  20. Koziol, L., Valdez, C.A., Baker, S.E., Lau, E.Y., Floyd, W.C., Wong, S.E., Satcher, J.H., Jr., Lightstone, F.C., and Aines, R.D., Toward a small molecule, biomimetic carbonic anhydrase model: theoretical and experimental investigations of a panel of zinc(II) aza-macrocyclic catalysts, Inorg. Chem., 2012, vol. 51, p. 6803.
  21. Chandra, S. and Gupta, L.K., Mass, IR, electronic and EPR spectral studies on transition metal complexes with a new tetradentate 12-membered new macrocyclic ligand, Spectrochim. Acta A, 2004, vol. 60, p. 3079.
  22. Zafar, H., Kareem, A., Sherwani, A., Mohammad, O., and Khan, T.A., Synthesis, characterization and biological studies of homo and hetero-binuclear 13-membered pentaaza bis (macrocyclic) complexes, J. Mol. Struct., 2015, vol. 1079, p. 337.
  23. Varganici, C.D., Marangoci, N., Rosu, L., Barbu-Mic, C., Rosu, D., Pinteala, M., and Simionescu, B.C., Pyrolysis, TGA/DTA–FTIR–MS coupling as analytical tool for confirming inclusion complexes occurrence in supramolecular host-guest architectures, J. Anal. Appl. Pyrol., 2015, vol. 115, p. 132.
  24. Vashistha, V.K., Das, D.K., Yadav, A., Saini, D., and Kumar, A., Synthesis, structure and catalytic performance of N4-macrocycles of FeIII and CoII for oxidation of hydroquinone, Anal. Bioanal. Electrochem., 2020, vol. 12, p. 318.
  25. Kumar, A., Vashistha, V.K., Tevatia, P., and Singh, R., Voltammetric determination of molecular modeling parameters for pentaazamacrocyclic complexes of Mn(II)and Co(II), Anal. Bioanal. Electrochem., 2016, vol. 8, p. 848.
  26. Kumar, A., Vashistha, V.K., Tevatia, P., Sweety, and Singh, R., Antimicrobial studies of tetraazamacrocyclic complexes of Fe(III) and Co(II), Pharma Chem., 2016, vol. 8, p. 146.
  27. Vashistha, V.K. and Kumar, A., Design and synthesis of MnN4 macrocyclic complex for efficient oxygen reduction reaction electrocatalysis, Inorg. Chem. Commun., 2020, vol. 112, p. 107700.
  28. Gautam, S., Kumar, A., Vashistha, V.K., and Das, D.K., Phyto-assisted Synthesis and Characterization of V2O5 Nanomaterial and Their Electrochemical and Antimicrobial Investigations. Nano LIFE, 2020. https://doi.org/10.1142/S1793984420500038
  29. Ding, P., Wang, Y., Kou, H., Li, J., and Shi, B., Synthesis of heterobinuclear Cu (α)-Ni (α) complex: Structure, CT-DNA interaction, hydrolytic function and antibacterial studies, J. Mol. Struct., 2019, vol. 1196, p. 836.