Article
2020

The Prospects of the in situ and ex situ Use of Aqueous Solutions of Hydrogen Peroxide Electrogenerated from Oxygen


V. L. Kornienko V. L. Kornienko , G. A. Kolyagin G. A. Kolyagin , G. V. Kornienko G. V. Kornienko , T. A. Kenova T. A. Kenova
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193520050067
Abstract / Full Text

Abstracts

The results and prospects of the in situ (in the cell volume) and ex situ (outside the cell) use of aqueous solutions of hydrogen peroxide electrogenerated from oxygen in gas-diffusion electrodes (GDE) of carbon black are discussed. It is shown that using GDE based on technological A-437E carbon (acetylene black) and mesostructured carbon CMK-3 allows the Н2О2 solution with the concentration higher than 3 M to be obtained. It is found that electrosynthesized hydrogen peroxide may be used in situ with the high efficiency both in the indirect electrosynthesis of important organic and inorganic target products and in the destruction of organic and inorganic pollutants present in waste waters of different origin. Under the ex situ conditions, it is possible to synthesize the more concentrated solutions of Н2О2, organic peroxoacids, and inorganic peroxosolvates and also to carry out mineralization of exometabolites in autonomous life-support systems. These results may be helpful in selecting the most appropriate versions of using hydrogen peroxide solutions electrogenerated from oxygen for solving particular problems.

Author information
  • Federal Research Institute “Krasnoyarsk Research Center”, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia

    V. L. Kornienko, G. A. Kolyagin, G. V. Kornienko & T. A. Kenova

  • Reshetnev Siberian State University of Science and Technology, 660049, Krasnoyarsk, Russia

    G. V. Kornienko

References
  1. Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice. London: Oxford University, 1998.
  2. Pletcher, D., Indirect oxidations using electrogenerated hydrogen peroxide, Acta Chem. Scand., 1999, vol. 53, p. 745.
  3. Kornienko, V.L., Indirect oxidation of organics by hydrogen peroxide electrochemically generated in situ from oxygen, Khim. Interesakh Ustoich. Razvit., 2002, vol. 10, p. 391.
  4. Ogibin, Yu.N., Elinson, M.N., and Nikishin, G.I., Mediator oxidation systems in organic electrosynthesis, Russ. Chem. Rev., 2009, vol. 78, p. 89.
  5. Brillas, E., Bastida, R.M., and Llosa, E., Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode, J. Electrochem. Soc., 1995, vol. 142, p. 1733.
  6. Brillas, E., Sires, I., and Oturam, M.A., Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 2009, vol. 109, p. 6570.
  7. Giomo, M., Boso, A., Sandona, G., Boye, B., and Farnia, G., A small-scale pilot plant using an oxygen-reducing gas-diffusion electrode for hydrogen peroxide electrosynthesis, Electrochim. Acta, 2008, vol. 54, p. 808.
  8. Noyori, R., Pursuing practical elegance in chemical synthesis, Chem. Comm., 2005, p. 1807.
  9. Schumb, W.C., Satterfield, C.N., and Wentworth, R.L., Hydrogen peroxide, New York: Chapman and Hall, 1958.
  10. Chemistry and Technology of Hydrogen Peroxide, Seryshev, G.A., Ed., London: Chemistry, 1984.
  11. Berl, B.E., A new cathodic process for the production H2O2, Trans. Electrochem. Soc., 1939, vol. 76, p. 359.
  12. Kornienko, V.L., Kolyagin, G.A., and Saltykov, Yu.V., Electrosynthesis H2O2 from O2 at carbon electrodes in alkali medium, Russ J. Appl. Chem. 1999. vol. 72. p. 353.
  13. Titova, V.K., Nikol’skaya, V.P., Buyanov, V.V., and Suprun, I.P., Methods for concentration of hydrogen peroxide to obtain it in anhydrous form, Russ. J. Appl. Chem., 2002, vol. 75, p. 1903.
  14. Vysotskaya, N.A., Reactivity of HO, O•-, \({\text{HO}}_{2}^{● }\) radicals and oxygen atoms in aqueous solutions of aromatic compounds, Usp. Khim., 1973, vol. 42, p. 1843.
  15. Kornienko, V.L., Chaenko, N.V., and Kornienko, G.V., Indirect electrochemical oxidation of organics by active oxygen forms, inElektrokhmiya organicheskikh soedinenii v nachale XXI veka (Electrochemistry of Organic Compounds in the Beginning of XXI Century), Gul’tyay, V.P., Krivenko, A.G., and Tomilov, A.P., Eds., Moscow: Sputnic+, 2008, p. 147.
  16. Nagiev, T.M., Conjugate reactions of oxidation by hydrogen peroxide), Usp. Khim., 1985, vol. 54, p. 1654.
  17. Kornienko, V.L., Kolyagin, G.A., and Saltykov, Yu.V., Elektrosintez v gidrofobizirivannykh elekrodakh (Electrosynthesis in Hydrobized Electrodes), Tomilov, A.P., Ed., Novosibirsk: Sib. Otd. Nauk, 2011, p. 109.
  18. Brillas, E., Mur, E., and Casado, I., Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE–O2 fed cathode, J. Electrochem. Soc., 1996, vol. 143, p. L.49.
  19. Brillas, E., Sauleda, R., and Casado, I., Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode, J. Electrochem. Soc., 1997, vol. 144, p. 2374.
  20. Moreira, F.C., Boaventura, R.A.R., Brillas, E., and Vilar, V.J.P., Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal. B, 2017, vol. 202, p. 217.
  21. Kahoush, M., Behary, N., Cayla, A., and Nierstrasz, V., Bio-Fenton and bio-electro-Fenton as sustainable methods for degrading organic pollutants in wastewater, Process Biochem., 2018, vol. 64, p. 237.
  22. Chen, Z., Dong, H., Yu, H., Yu, H., Zhao, M., and Zhang, X., Performance and mechanism of in situ electro-catalytic flue gas desulfurization via carbon black-based gas diffusion electrodes doped with MWCNTs, Electrocatal., 2017, vol. 8, p. 103.
  23. Vijapur, S. H., Hall, T.D., Snyder, S.T., Inman, M., Taylor, E.J., and Skinn, B.T., Electrochemical peroxide generation, ECS Trans., 2017, vol. 77, p. 947.
  24. Fukuzumi, S. and Yamada, Y., Hydrogen peroxide used as a solar fuel in one-compartment fuel cells, ChemElectroChem., 2016, vol. 3, p. 1978.
  25. Gravotto, G., Di Carlo, S., Ondruschka, B., Tumiatti, V., and Roggero, C.M., Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves, Chemosphere, 2007, vol. 69, p. 1326.
  26. Mousset, E., Trellu, C., Oturan, N., Rodrigo, M.A., and Oturan, M. A., Soil remediation by electro-Fenton process: in electro Fenton process, HEC, 2017, vol. 61, p. 399.
  27. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Chaenko, N.V., Kosheleva, A.M., Kenova, T.A., and Vasil’eva, I.S., Use of aqueous hydrogen peroxide solutions prepared by cathodic reduction of oxygen for indirect oxidation of chemical substances in situ: achievements and prospects, Russ. J. Appl. Chem., 2014, vol. 87, p. 3.
  28. Garcia-Rodriguez, O., Lee, Y.Y., Olvera-Vargas, H., Deng, F., Wang, Z., and Lefebvre, O., Mineralization of wastewater by electro-Fenton with on enhanced graphene-based gas diffusion cathode, Electrochim. Acta, 2018, vol. 276, p. 12.
  29. Zhang, Z., Meng, H., Wang, Y., Shi, L., Wang, X., and Cha, S., Fabrication of graphene graphite-based gas diffusion electrode for improving H2O2 generation in electro-Fenton process, Electrochim. Acta, 2018, vol. 260, p. 112.
  30. Luo, H., Li, C., Wu, C., Zheng, W., and Dong, X., Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode, Electrochim. Acta, 2015, vol. 186, p. 486.
  31. Kharlamova, T.A. and Aliev, Z.M., Use of electrolysis under pressure for destructive of phenol and azodyes, Russ. J. Electrochem., 2016, vol. 52, p. 251.
  32. Perazzolo, V., Durante, C., and Gennaro, A., Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment, J. Electroanal. Chem. 2016, vol. 782, p. 264.
  33. Kornienko, G.V., Kolyagin, G.A., Kornienko, V.L., and Parfenov, V.A., Graphitized carbon materials for electrosynthesis of H2O2 from O2 in gas-diffusion electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 983.
  34. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Parfenov, V.A., and Petin, A.A., Electrosynthesis of H2O2 from O2 in gas diffusion electrodes based on soot CH600, Russ. J. Electrochem., 2017, vol. 53, p. 1329.
  35. Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik S.D., Composite electrodes of electrochemical capacitors based on carbon materials with different structure, Russ. J. Electrochem., 2014, vol. 50, p. 419.
  36. Kolyagin, G.A., Kornienko, G.V., Kornienko, V.L., and Ponomarenko, I.V., Electrochemical reduction of oxygen to hydrogen peroxide in gas-diffusion electrode based on mesoporous carbon, Russ. J. Appl. Chem., 2017, vol. 90, p. 1143.
  37. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Parfenov, V.A., and Ponomarenko, I.V., Electrosynthesis of H2O2 from O2 in gas diffusion electrodes based on mesostructured carbon CMK-3, Russ. J. Electrochem., 2018, vol. 54, p. 192.
  38. Luo, H., Li, C., Wu, C., and Dong, X., In situ electrosynthesis of hydrogen peroxide with an improved gas diffusion cathode rolling by carbon black and PTFE, RSC Advances, 2015, vol. 5, p. 6527.
  39. Vasiľeva, I.S., Kolyagin, G.A., and Kornienko, V.L., Highly selective indirect electrochemical oxidation of formaldehyde in situ \({\text{HO}}_{2}^{ - }\) generated from O2 in a gas diffusion electrode in alkali medium, Russ. J. Appl. Chem., 2000, vol. 73, p. 1036.]
  40. Chaenko, N.V., Pavlenko N.I., and Kornienko, V.L., Indirect electrochemical oxidation of maleic acid by hydrogen peroxide in situ generated from oxygen in a gas diffusion electrode, Khim. Interesakh Ustoich. Razvit., 2002, vol. 10, p. 497.
  41. Sato, K., Aoki, M., and Noyori, R.A., A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide, Science, 1998, vol. 281, no. 5385, p. 1646.
  42. Lyalin, B.V. and Petrosyan, V.A., Electrosynthesis of adipic acid in conditions of diaphragm free electrolysis, Russ. Chem. Bull., 2004, p. 657.
  43. Lyalin, B.V. and Petrosyan, V.A., Oxidation of organic compounds on NiOOH electrode, Russ. J. Electrochem., 2010, vol. 46, p. 1199.
  44. Chaenko, N.V., Kornienko, G.V., Sokolenko, V.V., and Kornienko, V.L., Redox-mediated oxidation of cyclohexanone to adipic acid on oxide-nickel anode, with active forms of oxygen involved, Russ. J. Appl. Chem., 2014, vol. 87, p. 444.
  45. Pillai, U.R. and Sahle-Demessie, Oxidation of alcohols over Fe3+/montmorillonite-K10 using hydrogen peroxide, Appl. Catal., A, 2003, vol. 245, p. 103.
  46. Remorov, B.S., Avrutskaya, I.A., and Fioshin, M.Ya., Effect of electrode material on isobutyl alcohol electrooxidation in alkaline solution, Sov. Electrochem. 1981, vol. 17, p. 1287.
  47. Chaenko, N.V., Kornienko, G.V., Kosheleva, A.M., Maksimov, N.G., and Kornienko, V.L., Indirect electrochemical oxidation of aliphatic alcohols to carboxylic acids by active oxygen forms in aqueous media, Russ. J. Electrochem., 2011, vol. 47, p. 1146.
  48. Kosheleva, A.M., Chaenko, N.M., Kornienko, G.V. Vlasenko, V.I., and Kornienko, V.L., Nonanol-1 oxidation on nickel oxide electrode with the involvement of active oxygen forms, Russ. J. Electrochem., 2013, vol. 49, p. 96.
  49. Kosheleva, A.M., Maksimov, N.G., Kornienko, G.V., and Kornienko, V.L., Studies of kinetics of indirect in situ electrocatalytic oxidation of aliphatic alcohols to carboxylic acids by active forms of oxygen, Russ. J. Electrochem., 2015, vol. 51, p. 1079.
  50. Kornienko, V.L., Kosheleva, A.M., and Kornienko, G.V., Electrosynthesis of carboxylic acids by indirect electrocatalytic oxidation with active forms of oxygen, Khim. Interesakh Ustoich. Razvit., 2016, vol. 24, p. 613.
  51. Llanos, J., Moraleda, I., Sáez, C., Rodrigo, M.A., and Cañizares, P., Optimization of a cell for the electrochemical synergistic production of peroxoacetic acid, Electrochim. Acta, 2018, vol. 260, p. 177.
  52. Kitis, M., Disinfection of wastewater with peracetic acid: a review, Environ. Int., 2004, vol. 30, p. 47.
  53. Saha, M.S., Denggerile, A., Nishiki, Y., and Ohsaka, T., Synthesis of peroxyacetic acid using in situ electrogenerated hydrogen peroxide on gas diffusion electrode, Electrochem. Commun., 2003, vol. 5, p. 445.
  54. Saha, M.S., Nishiki, Y., Furuta, T., and Ohsaka, T., Electrolytic synthesis of peroxyacetic acid using in situ generated hydrogen peroxide on gas diffusion electrodes, J. Electrochem. Soc., 2004, vol. 151, p. 93.
  55. Chaenko, N.V., Kornienko, G.V., and Kornienko, V.L., Indirect electrosynthesis of peracetic acid using hydrogen peroxide generated in situ a gas diffusion electrode, Russ. J. Electrochem., 2011, vol. 47, p. 230.
  56. Kolyagin, G.A., Vasiľeva, I.S., and Kornienko, V.L., Effect of the composition of acid solutions and the presence of organic acid on oxygen electroreduction to hydrogen peroxide in a carbon black gas-diffusion electrode, Russ. J. Electrochem., 2011, vol. 47, p. 282.
  57. Grangaard, D.H., US Patent 3591470, 1971.
  58. Vasil’eva, I.S., Kornienko, V.L., and Kolyagin, G.A., Indirect electrochemical oxidation of formaldehyde by hydrogen peroxide generated from oxygen in the presence of Fe (II) salts in acidic solutions, Khim. Interesakh Ustoich. Razvit., 2001, vol. 9, p. 529.
  59. Vasil′eva, I.S. and Kornienko, V.L., Mineralization of formic acid by intermediates \({\text{O}}{{{\text{H}}}^{● }}\) and \({\text{HO}}_{2}^{● }\) in cell without membrane in electrolytes with different pH, Khim. Interesakh Ustoich. Razvit., 2003, vol. 11, p. 713.
  60. Kornienko, G.V., Kornienko, V.L., Maksimov, N.G., and Pavlenko, N.I., Oxidation of phenol by hydrogen peroxide in situ generated in a gas- diffusion electrode in alkali electrolyte, Khim. Interesakh Ustoich. Razvit., 2001, vol. 9, p. 35.
  61. Kornienko, G.V., Maksimov, N.G., Kornienko, V.L., and Pavlenko, N.I., Destructive oxidation of phenol by hydrogen peroxide in alkali medium in cell without membrane, Khim. Interesakh Ustoich. Razvit., 2002, vol. 10, p. 321.]
  62. Kornienko, G.V., Chaenko, N.V., and Kornienko, V.L., Indirect electrochemical oxidation of phenol by hydrogen peroxide in situ generated in a gas-diffusion electrode in acidic and neutral mediums, Khim. Interesakh Ustoich. Razvit., 2006, vol. 14, p. 23.
  63. Turkay, O., Barisci, S., Ozturk, B., Öztürk, H., and Dimoglo, A., Electro-peroxone treatment of phenol: Process comparison, the effect of operational parameters and degradation mechanism, J. Electrochem. Soc., 2017, vol. 164, p. 180.
  64. Yalfani, M.S., Contreras, S., Medina, F., and Sueiras, J., Phenol degradation by Fenton’s process using catalytic in situ generated hydrogen peroxide, Appl. Catal., 2009, vol. 89, p. 519.
  65. Mousset, E., Frunzo, I., Esposito, G., van Hullebusch, E.D., Oturan, N., and Oturan, M.A., A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study, Appl. Catal., B, 2016, vol. 180, p. 189.
  66. Pimentel, M., Oturan, N., Dezotti, M., and Oturan, M.A., Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, Appl. Catal., 2008, vol. 83, p. 140.
  67. Maksimov, V.F., Volf, I.V., and Vinokurova, T.A., Ochistka i rekuperatsiya promyshlennykh vybrosov (Purification and Recuperation of Industrial Emissions), Moscow: Lesnaya Promyshl., 1989
  68. Kornienko, G.V., Chaenko, N.V., Kornienko, V.L., and Maksimov, N.G., Neutralization of N-methyl-p-aminophenol by indirect electrochemical oxidation with reactive oxygen species different pH, Khim. Interesakh Ustoich. Razvit., 2007, vol. 15, p. 171.
  69. Kornienko, V.L., Chaenko, N.V., and Kornienko, G.V., Indirect electrochemical destructive oxidation of aromatic compounds with reactive oxygen species, Russ. J. Electrochem., 2007, vol. 43, p. 1243.]
  70. Kornienko, G.V., Chaenko, N.V., and Kornienko, V.L., Indirect electrochemical oxidation of N-methyl-p-aminophenol by active oxygen species generated in situ from O2, H2O, and H2O2, Russ. J. Appl. Chem. 2008, vol. 81, p. 1364.
  71. Lunar, L., Sicilia, D., Rubio, S., Pérez-Bendito, D., and Nickel, U., Identification of metol degradation products under Fenton’s reagent treatment using liquid chromatography-mass spectrometry, Water Res., 2000, vol. 34, p. 3400.
  72. Aceituno, M., Stalikas, C.D., Lunar, L., Rubio, S., and Pérez-Bendito, D., H2O2/TiO2 photocatalytic oxidation of metol identification of intermediates and reaction pathways, Water Res., 2002, vol. 36, p. 3582.
  73. SAN. PIN. 4630-88, Sanitary rules and regulations for the protection of surface waters from pollutants, Moscow: Ministry of Health USSR, 1988.
  74. Panizza, M., Michaud, P.A., Cerisola, G., and Comninellis, Ch., Anodic oxidation of 2-naphthol at boron-doped diamond electrodes, J. Electroanal. Chem., 2001, vol. 507, p. 206.
  75. Kornienko, G.V., Chaenko, N.V., Maksimov, N.G., and Kornienko, V.L., Oxidation of β-Naphthol by active oxygen species generated in electrochemical cells, Russ. J. Appl. Chem., 2009, vol. 82, p. 1018.
  76. Chaenko, N.V., Kornienko, G.V., and Kornienko, V.L., Electrochemical mineralization of β-Naphthol by in situ active oxygen species, Khim. Interesakh Ustoich. Razvit., 2010, vol. 18, № 2, p. 171.
  77. Panizza, M., Bocca, C., and Cerisola, G., Electrochemical treatment of wastewater containing polyaromatic organic pollutants, Water Res., 2000, vol. 34, p. 2601.
  78. Le Naour, C., Moisy, P., Arpigny, S., and Madic, C., Electro-oxidation of dihydroxymalonic acid on polycrystalline platinum electrode, Electrochim. Acta, 1999, vol. 44, p. 3505.
  79. Oliveira, R.T.S., Salazar-Banda, G.R., Santos, M.C., Calegaro, M. L., Miwa, D.W., Machado, S.A.S., and Avaca, L.A., Electrochemical oxidation of benzene on boron-doped diamond electrodes, Chemosphere, 2007, vol. 66, p. 2152.
  80. Kornienko, G.V., Kenova, T.A., Kornienko, V.L., Maksimov, N.G., and Balhareva, M.Ya., Indirect electrochemical oxidation of aniline in acid electrolyte with active oxygen species, Russ. J. Appl. Chem., 2016, vol. 89, p. 1612.
  81. Kenova, T.A., Kornienko, V.L., and Machova, N.V., in Materials of IV International symposium “Gold of Siberia: geochemistry, technology, economy”, Krasnoyarsk: KNIIG MS, 2006. p. 96.
  82. Kenova, T.A., Kornienko, V.L., and Drozdov, S.V., On electrochemical oxidation of thiocyanates in solutions for cyanidation of gold- containing ores and concentrates, Russ. J. Appl. Chem., 2010, vol. 83, p. 1589.
  83. Titova, K.V., Hydrogen peroxide in synthesis peroxo solvates, Russ. J. Inorg. Chem., 2000, vol. 45, p. 320.
  84. Kolyagin, G.A. and Kornienko, V.L., Electrosynthesis of hydrogen peroxide in solutions of salts that form molecular addition products (peroxo solvates) with it, Russ. J. Electrochem., 2014, vol. 50, p. 798.
  85. Kudenko, Ya.A. and Pavlenko, R.A., RF Patent 2111939, 1998.
  86. Kolyagin, G.A., Kornienko, V.L., Kudenko, Ya.A., Tikhomirov, A.A., and Trifonov, S.V., Electrosynthesis of hydrogen peroxide from oxygen in gas-diffusion electrode in solutions of mineralized exometabolites, Russ. J. Electrochem., 2013, vol. 49, p. 1004.
  87. Kornienko, V.L. and Kolyagin, G.A., Indirect Electrochemical oxidation of brown coal on gas-diffusion electrodes in aqueous electrolyte, Trans. SAEST, 1999, vol. 34, p. 32.
  88. Kolyagin, G.A., Kornienko, V.L., and Vetoshkina, O.V., Indirect electrochemical oxidation of brown coal by hydrogen peroxide generated from oxygen in a gas-diffusion electrode, Russ. J. Appl. Chem., 2000, vol. 73, p. 1734.