Physico-Chemical and Electrochemical Properties of Lithium Bis(Oxalate)Borate Solutions in Sulfolane

L. V. Sheina L. V. Sheina , A. L. Ivanov A. L. Ivanov , E. V. Karaseva E. V. Karaseva , V. S. Kolosnitsyn V. S. Kolosnitsyn
Russian Journal of Electrochemistry
Abstract / Full Text

The physico-chemical, electrochemical, and thermal properties of lithium bis(oxalate)borate solutions in sulfolane are studied. The sulfolane solutions of lithium bis(oxalate)borate were found to have lower specific ion conductivity and higher viscosity as compared with solutions of lithium perchlorate and lithium hexafluorophosphate. With an increase in the concentration of lithium bis(oxalate)borate solutions in sulfolane, the activation energies for ion conductivity and viscous flow increased. The association constant of lithium bis(oxalate)borate in sulfolane is lower than that of LiClO4 and close to LiPF6. From the dependence of the association constant on the donor number of lithium salts’ anions, the donor number value of the [B(C2O4)] anion was estimated as ~3. The effective transference number of lithium ion in 1 M lithium bis(oxalate)borate solution in sulfolane is 0.46 ± 0.03, which is higher than in 1 M LiClO4 solution (0.39 ± 0.02) and close to 1 M LiBF4 solution (0.42 ± 0.03) in sulfolane. The sulfolane solutions of lithium bis(oxalate)borate are shown to be prone to supercooling and thermodynamically nonequilibrium states formation. The anodic stability boundary of 1 M lithium bis(oxalate)borate solution in sulfolane is as high as 5.65 V vs. Li/Li+ reference electrode. According to the anodic stability, sulfolane solutions of lithium salts are ranked in the following order: LiPF6 ~ LiBF4 > Li bis(oxalate)borate ~ LiClO4 > LiSO3CF3. The cycling life of lithium metal electrode in lithium bis(oxalate)borate sulfolane solution is 1.75 times longer than that in LiClO4 solution; it is determined by the dispersion rate of lithium metal rather than by the electrolyte decomposition rate.

Author information
  • Ufa Federal Research Center, Russian Academy of Sciences, Ufa Institute of Chemistry, Ufa, Russia

    L. V. Sheina, A. L. Ivanov, E. V. Karaseva & V. S. Kolosnitsyn

  1. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chem. Rev., 2014, vol. 114, p. 11503.
  2. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, vol. 104, no. 10, p. 4303.
  3. Jow, T.R., Xu, K., Borodin, O., and Ue, M., Electrolytes for Lithium and Lithium-Ion Batteries, in: Modern Aspects of Electrochemistry, New York: Springer Science & Business Media, 2014, vol. 58.
  4. Tebbe, J.L., Fuerst, T.F., and Musgrave, C.B., Mechanism of hydrofluoric acid formation in ethylene carbonate electrolytes with fluorine salt additives, J. Power Sources, 2015, vol. 297, p. 427.
  5. Handel, P., Fauler, G., Kapper, K., Schmuck, M., Stangl, C., Fischer, R., Uhlig, F., and Koller, S., Thermal aging of electrolytes used in lithium-ion batteries – An investigation of the impact of protic impurities and different housing materials, J. Power Sources, 2014, vol. 267, p. 255.
  6. Xu, K., Zhang, S.S., Lee, U., Allen, J.L., and Jow, T.R., LiBOB: Is it an alternative salt for lithium ion chemistry? J. Power Sources, 2005, vol. 146, p. 79.
  7. Younesi, R., Veith, G. M., Johansson, P., Edström, K., and Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S (Review), Energy Environ. Sci., 2015, vol. 8, p. 1905.
  8. Liu, Z., Chai, J., Xu, G., Wang, Q., and Cui, G., Functional lithium borate salts and their potential application in high performance lithium batteries, Coord. Chem. Rev., 2015, vol. 292, p. 56.
  9. Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovolsky, Y.A., New Lithium Salts in Electrolytes for Lithium-Ion Batteries (Review), Russ. J. Electrochem., 2017, vol. 53, p. 677.
  10. Cui, X., Tang, F., Zhang, Y., Li, C., Zhao, D., Zhou, F., Li, S., and Feng, H., Influences of trace water on electrochemical performances for lithium hexafluoro phosphate- and lithium bis(oxalato)borate-based electrolytes, Electrochim. Acta, 2018, vol. 273, p. 191.
  11. Wang, R., Li, X., Wang, Z., Guo, H., Su, M., and Hou, T., Comparative study of lithium bis(oxalate)borate and lithium bis(fluorosulfonyl)imide on lithium manganese oxide spinel lithium-ion batteries, J. Alloys Compd., 2015, vol. 624, p. 74.
  12. Haregewoin, A.M., Wotango, A.S., and Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy Environ. Sci., 2016, vol. 9, p. 1955.
  13. Xu, K., Zhang, S., and Jow, T.R., Formation of the Graphite-Electrolyte Interface by Lithium Bisoxalatoborate, Electrochem. Solid-State Lett., 2003, vol. 6, no. 6, p. A117.
  14. Pieczonka, N.P.W., Yang, L., Balogh, M.P., Powell, B.R., Chemelewski, K., Manthiram, A., Krachkovskiy, S.A., Goward, G.R., Liu, M., and Kim, J.-H., Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries, J. Phys. Chem. C, 2013, vol. 117, p. 22603.
  15. Chen, F., Wang, B., Wang, F., Jiang, Y., Dong, B., Zhao, H., and Wang, D., Precast solid electrolyte interface film on Li metal anode toward longer cycling life, Ionics, 2020, vol. 26, p. 1711.
  16. Xu, K., LiBOB as additive in LiPF6-based lithium ion electrolytes, Electrochem. Solid-State Lett., 2005, vol. 8, no. 7, p. A365.
  17. Santee, S., Xiao, A., Yang, L., Gnanaraj, J., and Lucht, B.L., Effect of combinations of additives on the performance of lithium ion batteries, J. Power Sources, 2009, vol. 194, p. 1053.
  18. Zhang, S.S., An unique lithium salt for the improved electrolyte of Li-ion battery, Electrochem. Commun., 2006, vol. 8, p. 1423.
  19. Flamme, B., Haddad, M., Phansavath, P., Ratovelomanana-Vidal, V., and Chagnes, A., Anodic Stability of New Sulfone-Based Electrolytes for Lithium-Ion Batteries, ChemElectroChem., 2018, vol. 5, p. 2279.
  20. Abouimrane, A., Belharouak, I., and Amine, K., Sulfone-based electrolytes for high-voltage Li-ion batteries, Electrochem. Commun., 2009, vol. 11, p. 1073.
  21. Wu, F., Zhou, H., Bai, Y., Wang, H., and Wu, C., Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 27, p. 15098.
  22. Shao, N., Sun, X.-G., Dai, S., and Jiang D., Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries, J. Phys. Chem. B, 2011, vol. 115, p. 12120.
  23. Li, S., Zhao, W., Xiaoling, C., Zhao, Y., Li, B., Zhang, H., Li, Y., Li, G., Ye, X., and Luo, Y., An improved method for synthesis of lithium difluoro(oxalato) borate and effects of sulfolanee on the electrochemical performances of lithium-ion batteries, Electrochim. Acta, 2013, vol. 91, p. 282.
  24. Wu, F., Xiang, J., Li, L., Chen, J., Tan, G., and Chen, R., Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries, J. Power Sources, 2012, vol. 202, p. 322.
  25. Zhang, T., de Meatza, I., Qi, X., and Paillard, E., Enabling steady graphite anode cycling with high voltage, additive-free, sulfolanee-based electrolyte: Role of the binder, J. Power Sources, 2017, vol. 356, p. 97.
  26. Wang, Y., Xing, L., Li, W., and Bedrov, D., Why Do Sulfone-Based Electrolytes Show Stability at High Voltages? Insight from Density Functional Theory, J. Phys. Chem. Lett., 2013, vol. 4, p. 3992.
  27. Lide, D.R., Handbook of Chemistry and Physics, 85th edition, New York.: CRC Press LLC, 2005.
  28. Xu, K. and Angell, C.A., Sulfone-Based Electrolytes for Lithium-Ion Batteries, J. Chem. Soc., 2002, vol. 149, no. 7, p. A920.
  29. Xue, L., Lee, S.-Y., Zhao, Z., and Angell, C.A., Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries, J. Power Sources, 2015, vol. 295, p. 190.
  30. Demeaux, J., De Vito, E., Lemordant, D., Le Digabel, M., Galiano, H., Caillon-Caravanier, M., and Claude-Montigny, B., On the limited performances of sulfone electrolytes towards the LiNi0.4Mn1.6O4 spinel, J. Phys. Chem. Chem. Phys., 2013, vol. 15, p. 20900.
  31. Lee, S.-Y., Ueno, K., and Angell, C.A., Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive Compositions, J. Phys. Chem. C, 2012, vol. 116, p. 23915.
  32. Lewandowski, A., Kurc, B., Stepniak, I., and Swiderska-Mocek, A., Properties of Li-graphite and LiFePO4 electrodes in LiPF6–sulfolane electrolyte, Electrochim. Acta, 2011, vol. 56, p. 5972.
  33. Li, C., Wang, P., Li, S., Zhao, D., Zhao, Q., Liu, H., and Cui, X.-L., Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complex, ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 30, p. 25744.
  34. Wan, S., Jiang, X., Guo, B., Dai, S., Goodenough, J.B., and Sun, X.-G., A stable fluorinated and alkylated lithium malonatoborate salt for lithium ion battery application, Chem. Commun., 2015, vol. 51, p. 9817.
  35. Wang, S., Qiu, W., Guan, Y., Yu, B., Zhao, H., and Liu, W., Electrochemical characteristics of LiMxFe1 – xPO4 cathode with LiBOB based electrolytes, Electrochim. Acta, 2007, vol. 52, p. 4907.
  36. Swiderska-Mocek, A. and Naparstek, D., Physical and electrochemical properties of lithium bis(oxalate) borate—organic mixed electrolytes in Li-ion batteries, Electrochim. Acta, 2016, vol. 204, p. 69.
  37. Li, S.Y., Cui, X.L., Xu, X.L., Shi, X.M., and Li, G.X., Electrochemical performances of two kinds of ternary electrolyte mixtures with lithium bis(oxalate)borate, Russ. J. Electrochem., 2012, vol. 48, p. 518.
  38. Xu, W. and Angell, C.A., LiBOB and Its Derivatives. Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions, Electrochem. Solid-State Lett., 2001, vol. 4, no. 1, p. E1.
  39. Aihara, Y., Bando, T., Nakagawa, H., Yoshida, H., Hayamizu, K., Akiba, E., and Price, W.S., Ion Transport Properties of Six Lithium Salts Dissolved in γ-Butyrolactone Studied by Self-Diffusion and Ionic Conductivity Measurements, J. Electrochem. Soc., 2004, vol. 151, no. 1, p. A119.
  40. Li, S., Li, B., Xu, X., Shi, X., Zhao, Y., Mao, L., and Cui, X., Electrochemical performances of two kinds of electrolytes based on lithium bis(oxalate)borate and sulfolanee for advanced lithium ion batteries, J. Power Sources, 2012, vol. 209, p. 295.
  41. Cui, X., Zhang, H., Li, S., Zhao, Y., Mao, L., Zhao, W., Li, Y., and Ye, X., Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and γ-butyrolactone, J. Power Sources, 2013, vol. 240, p. 476.
  42. Larsson, W., Panitz, J.-C., and Cedergren, A., Interference-free coulometric titration of water in lithium bis(oxalate)borate using Karl Fischer reagents based on N-methylformamide, Talanta, 2006, vol. 69, p. 276.
  43. Kolosnitsyn, V.S., Sheina, L.V., and Mochalov, S.E., Physicochemical and electrochemical properties of sulfolane solutions of lithium salts, Russ. J. Electrochem., 2008, vol. 44, p. 575.
  44. Mochalov, S.E., Antipin, A.V., and Kolosnitsyn, V.S., Multichannel test system for secondary chemical current sources and electrochemical cells, Scientific instrumentation, 2009, vol. 19, no. 3, p. 88. http://213.170.69. 26/en/magazine.php.
  45. Evans, J., Vincent, C.A., and Bruce, P.G., Electrochemical measurement of transference number in polymer electrolytes, Polymer., 1987, vol. 28., p. 2324.
  46. Bruce, P.G., Evans, J., and Vincent, C.A., Conductivity and Transference Number Measurements on Polymer Electrolytes, Solid State Ionics, 1988, vols. 28–30, p. 918.
  47. Johansson, P., Electronic structure calculations on lithium battery electrolyte salts, Phys. Chem. Chem. Phys., 2007, vol. 9, p. 1493.
  48. Linert, W., Camard, A., Armand, M., and Michot, C., Anions of low Lewis basicity for ionic solid state electrolytes, Coord. Chem. Rev., 2002, vol. 226, p. 137.
  49. Ue, M., Murakami, A., and Nakamura, S., A Convenient Method to Estimate Ion Size for Electrolyte Materials Design, J. Electrochem. Soc., 2002, vol. 149, p. A1385.
  50. Ue, M., Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ-Butyrolactone, J. Electrochem. Soc., 1994, vol. 141, no. 12, p. 3336.
  51. Allen, J.L., Han, S.-D., Boyle, P.D., and Henderson, W.A., Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox), J. Power Sources, 2011, vol. 196, p. 9737.
  52. You, L.S., Hua, M.P., Ling, C.X., Du, R.Q., and Qiang, L.F., Studies on the thermal decomposition kinetics of LiPF6 and LiBC4O8, J. Chem. Sci., 2008, vol. 120, no. 2, p. 289.
  53. Alvarado, J., Schroeder, M.A., Zhang, M., Borodin, O., Gobrogge, E., Olguin, M., Ding, M.S., Gobet, M., Greenbaum, S., Meng, Y.S., and Xu, K., A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries, Mater. Today, 2018, vol. 21, no. 4, p. 341.
  54. Borodin, O., Behl, W., and Jow, T.R., Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes, J. Phys. Chem. C, 2013, vol. 117, p. 8661.