Article
2021

Electrophysical Properties of the System PEG 1500–LiTFSI


M. M. Gafurov M. M. Gafurov , M. A. Akhmedov M. A. Akhmedov , S. I. Suleimanov S. I. Suleimanov , A. M. Amirov A. M. Amirov , K. Sh. Rabadanov K. Sh. Rabadanov , M. B. Ataev M. B. Ataev , Z. Yu. Kubataev Z. Yu. Kubataev
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193521110045
Abstract / Full Text

The thermal effects and dielectric properties of a lithium-ion polymer electrolyte, namely, polyethylene glycol (PEG 1500)–lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), are studied for different molar fractions of salt in polymer by the methods of electrochemical impedance spectroscopy and differential thermal analysis. The complicated form of the “final” diffusion impedance of the PEG 1500‑LiTFSI electrolyte system may be associated with superposition of two processes that occur simultaneously in the solid electrolyte interphase (SEI) layer and at the boundary of the electric double layer (EDL) It is found that the obtained diffusion coefficients do not fit the Arrhenius model in describing the mechanism of transfer of lithium ions in the PEG polymer matrix. It is shown that as the concentration of LiTFSI in PEG 1500 increases, the time of dielectric relaxation decreases. It is assumed that in the PEG 1500–LiTFSI system, the increase in the ionic conductivity with the increase in the temperature up to 343 K proceeds due to wave fluctuations of the lithium ion and the movements of the PEG 1500 matrix.

Author information
  • Analytical Center of Collective Use, Dagestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia

    M. M. Gafurov, M. A. Akhmedov, S. I. Suleimanov, A. M. Amirov, K. Sh. Rabadanov, M. B. Ataev & Z. Yu. Kubataev

References
  1. Wu, F., Maier, J., and Yu, Y., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev., 2020, vol. 49, p. 1569. https://doi.org/10.1039/C7CS00863E
  2. Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., and Wang, G., Polymer electrolytes for lithium-based batteries: Advances and prospects, Chem., 2019, vol. 5, p. 2326. https://doi.org/10.1016/j.chempr.2019.05.009
  3. Gafurov, M.M., Rabadanov, K.S., Shabanov, N.S., Akhmedov, M.A., Amirov, A.M., and Kubataev, Z.Yu., Vibrational spectra and ion–molecule interactions in poly(vinyl alcohol) + lithium salt (LiNO3, LiClO4, LiBF4), J. Appl. Spectrosc., 2019, vol. 86, no. 5, p. 782.https://doi.org/10.1007/s10812-019-00893-3
  4. Rabadanov, K.Sh., Gafurov, M.M., Akhmedov, M.A., Shabanov, N.S., Suleimanov, S.I., and Isaev, A.B., Electrical conductivity of PVA-PTK-LiClO4 polymer electrolyte, Vestnik DSU (in Russian), 2019, no. 3(34), p. 242. https://doi.org/10.21779/2542-0321-2019-34-2-98-104
  5. Arya, A. and Lal Sharma, A., Polymer electrolytes for lithium ion batteries: a critical study, Ionics, 2017, vol. 23, p. 497. https://doi.org/10.1007/s11581-016-1908-6
  6. Long, L., Wang, S., Xiao, M., and Meng, Y., Polymer electrolytes for lithium polymer batteries, J. Mater. Chem. A, 2016, vol. 4, p. 10038. https://doi.org/10.1039/C6TA02621D
  7. Yarmolenko, O.V., Yudina, A.V., and Khatmullina, K.G., Nanocomposite polymer electrolytes for the lithium power sources (a review), Russ. J. Electrochem., 2018, vol. 54, p. 325. https://doi.org/10.7868/S0424857018040011
  8. Baymuratova, G.R., Slesarenko, A.A., Yudina, A.V., and Yarmolenko, O.V., Conducting properties of nanocomposite polymer electrolytes based on polyethylene glycol diacrylate and SiO2 nanoparticles at the interface with a lithium electrode, Russ. Chem. Bull., 2018, vol. 67, p. 1648. https://doi.org/10.1007/s11172-018-2272-7
  9. Baskakova, Yu.V., Yarmolenko, O.V., and Efimov, O.N., Polymer gel electrolytes for lithium batteries, Russ. Chem. Rev., 2012, vol. 81(4), p. 367. https://doi.org/10.1070/RC2012v081n04ABEH004210
  10. Jeon, J, Lee, H, Choi, J. H., and Cho, M., Modeling and simulation of concentrated aqueous solutions of LiTFSI for battery applications, J. Phys. Chem. C., 2020, vol. 124, no. 22, p. 11790. https://doi.org/10.1021/acs.jpcc.0c02187
  11. Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovolsky, Y.A., New lithium salts in electrolytes for lithium-ion batteries (Review), Russ. J. Electrochem., 2017, vol. 53, p. 677. https://doi.org/10.1134/S1023193517070035
  12. Kalhoff, J., Bresser, D., Bolloli, M., Alloin, F., Sanchez, J.-Y., and Passerini, S., Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (co)solvent, ChemSusChem., 2014, no. 7(10), p. 2939. https://doi.org/10.1002/cssc.201402502
  13. Ulihin, A.S., Uvarov, N.F., and Gerasimov, K.B., Conductivity of lithium bis(trifluoromethane)sulfonamide (LiTFSI), Mater. Today: Proc., 2020, vol. 31, p. 532–534. https://doi.org/10.1016/j.matpr.2020.06.142
  14. Nilsson, V., Bernin, D., Brandell, D., Edstrom, K., and Johansson, P., Interactions and transport in highly concentrated LiTFSI-based electrolytes, ChemPhysChem., 2020, no. 21(11), p. 1166. https://doi.org/10.1002/cphc.202000153
  15. Sharova, V., Moretti, A., Diemant, T., Varzi, A., Behm, R.J., and Passerini, S., Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries, Power Sources, 2018, vol. 375, p. 43. https://doi.org/10.1016/j.jpowsour.2017.11.045
  16. Bekturov, E.A., Ismagulova, S.S., and Dzumadilov, T.K., Complexation of poly(ethylene glycol) with lithium salts in solution, Die Makromolekulare Chemie, 1990, no. 6(191), p. 1329. https://doi.org/10.1002/macp.1990.021910612
  17. Xue, Z., He, D., and Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 2015, no. 3(38), p. 19218. https://doi.org/10.1039/C5TA03471J
  18. Banitaba, S.N., Semnani D., Fakhrali, A., Ebadi, S.V., Heydari-Soureshjani, E., Rezaei, B., and Ensafi, A.A., Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: a versatile solvent-free electrolyte for lithium-ion battery application, Ionics, 2020, no. 7(26), p. 3249. https://doi.org/10.1007/s11581-019-03414-6
  19. Cai, D., Wang, D.H., Chen, Y.J., Zhang, S.Z., Wang, X.L., Xia, X.H., and Tu, J.P., A highly ion-conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries, Chem. Eng. J., 2020, vol. 394, p. 124993. https://doi.org/10.1016/j.cej.2020.124993
  20. Sekhar, B.C., Hachicha, R., Maffre, M., Bodin. C., le Vot, S., Favier, F., and Fontaine, O., Evaluation of the properties of an electrolyte based on formamide and LiTFSI for electrochemical capacitors, J. Electrochem. Soc., 2020, no. 167(11), p. 110508. https://doi.org/10.1149/1945-7111/aba076
  21. Zhou, H., Zhao, R., Xiao, Y., Feng, L., Yang, Y., Bao, L., and Wang, J., Quantum mechanical insight into the Li-ion conduction mechanism for solid polymer electrolytes, J. Polym. Sci., 2020, no. 24(58), p. 3480. https://doi.org/10.1002/pol.20200686
  22. Steinruck, H.G., Takacs, C.J., Kim, H.K., Macka-nic, D.G., Holladay, B., Cao, C.T., Narayanan, S., Dufresne, E.M., Chushkin, Y, Ruta, B., Zontone, F., Will, J., Borodin, O., Sinha, S.K., Srinivasan V., and Toney, M.F., Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte, Energy Environ. Sci., 2020, no. 11(13), p. 4312. https://doi.org/10.1039/D0EE02193H
  23. Tran, K.T.T., Le, L.T.M., Phan, A.L.B., Tran, P.H., Vo, T.D., Truong, T.T.T., Nguyen, N.T.B., Garg, A., Le, P.M.L., and Tran, M.V., New deep eutectic solvents based on ethylene glycol - LiTFSI and their application as an electrolyte in electrochemical double layer capacitor (EDLC), J. Mol. Liq., 2020, vol. 320, p. 114495. https://doi.org/10.1016/j.molliq.2020.114495
  24. Vélez, J. F., Aparicio, M., and Mosa, J., Effect of lithium salt in nanostructured silica–polyethylene glycol solid electrolytes for Li-ion battery applications, Phys. Chem. C, 2016, no. 40(120), p. 22852. https://doi.org/10.1021/acs.jpcc.6b07181
  25. Costa, L. T., Sun, B., Jeschull, F., and Brandell, D., Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend, Chem. Phys., 2015, no. 2(143), p. 024904. https://doi.org/10.1063/1.4926470
  26. Wetjen, M., Kim, G.T., Joost, M., Appetecchi, G.B., Winter, M., and Passerini, S., Thermal and electrochemical properties of PEO-LiTFSI-Pyr 14TFSI-based composite cathodes, incorporating 4V-class cathode active materials, J. Power Sources, 2014, vol. 246, p. 846. https://doi.org/10.1016/j.jpowsour.2013.08.037
  27. Zhu, C., Cheng, H., and Yang, Y., Electrochemical characterization of two with room-temperature ionic liquids, J. Electrochem. Soc., 2008, vol. 155, p. A569. https://doi.org/10.1149/1.2931523
  28. Gupta, H. and Singh, R.K., Ionic liquid-based gel polymer electrolytes for application in rechargeable lithium batteries, in Energy Storage Battery Systems—Fundamentals and Applications, IntechOpen, 2020. https://doi.org/10.5772/intechopen.93397
  29. Takeichi, N., Kojima, T., Senoh, H., and Ando, H., Local structure and electrochemical performances of sulfurized polyethylene glycol after heat treatment, Sci. Rep., 2020, no. 10, p. 16918. https://doi.org/10.1038/s41598-020-74118-5
  30. Li, S., Lorandi, F., Whitacre, J.F., and Matyjaszewski, K., Polymer chemistry for improving lithium metal anodes, Macromol. Chem. Phys., 2019, p. 1900379. https://doi.org/10.1002/macp.201900379
  31. Zhu, J., Zhu, P., Yan, C., Dong, X., and Zhang, X., Recent progress in polymer materials for advanced lithium-sulfur batteries, Prog. Polym. Sci., 2019, vol. 90, p. 118. https://doi.org/10.1016/j.progpolymsci.2018.12.002
  32. Yuan, Z., Zheng, H., Wang, S., and Feng, C., Influences of polyethylene glycol (PEG) on the performance of LiMn2O4 cathode material for lithium ion battery, J. Mater. Sci.: Mater. Electron., 2016, vol. 27(5), p. 5408. https://doi.org/10.1007/s10854-016-4442-4
  33. Geiculescu, O.E., Hallac, B.B., Rajagopal, R.V., Creager, S.E., DesMarteau, D.D., Borodin, O., and Smith, G.D., The effect of low-molecular-weight poly(ethylene glycol) (PEG) plasticizers on the transport properties of lithium fluorosulfonimide ionic melt electrolyte, Phys. Chem. B, 2014, vol. 118, p. 5135. https://doi.org/10.1021/jp500826c
  34. Devaux, D., Bouchet, R., Glé, D., and Denoyel, R., Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups, Solid State Ionics, 2012, vol. 227, p. 119. https://doi.org/10.1016/j.ssi.2012.09.020
  35. Gafurov, M.M., Akhmedov, M.A., Rabadanov, K.S., Shabanov, N.S., Amirov, A.M., Suleimanov, S.I., and Ataev, M.B., Study of the structure and electrical conductivity of lithium-conducting polymer electrolytes based on PEG-1500 – LiX (X = SCN, N(CF3SO2)2), Russ. Chem. Bull., 2020, no. 8(69), p. 1463. https://doi.org/10.1007/s11172-020-2924-2
  36. Zhou, H., Zhao, R., Xiao, Y., Feng, L., Yang, Y., Bao, L., and Wang, J., Quantum mechanical insight into the Li-ion conduction mechanism for solid polymer electrolytes, Polym. Sci., 2020, p. 2. https://doi.org/10.1002/pol.20200686
  37. Uvarov, N.F., Kompozitsionnye Tverdye Elektrolity (Composite Solid Electrolytes), Novosibirsk: SO RAN, 2008.
  38. Nguyen, T. Q. and Breitkopf, C., Determination of diffusion coefficients using impedance spectroscopy data, J. Electrochem. Soc., 2018, no. 14(165), p. E826. https://doi.org/10.1149/2.1151814jes
  39. Electroanalytical Methods. Guide to Experiments and Applications, Scholtz, F. (Ed.), Berlin: Splinger, 2010.
  40. Emel’yanova, Yu. V., Morozova, M.V., Mikhailovskaya, Z.A., and Buyanova, E.S., Impedansnaya spektroskopiya: Teoriya i primenenie (Impedance Spectroscopy: Theory and Application), Yekaterinburg: URFU, 2017.
  41. Choi, W., Shin, H.-Ch., Kim, J.M., Choi, J.-Y., and Yoon, W.-S., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries, J. Electrochem. Sci. Technol., 2020, no. 1(11), p. 1. https://doi.org/10.33961/jecst.2019.00528
  42. Volgin, I.V., Larin, S.V., and Lyulin, S.V., Diffusion of nanoparticles in polymer systems, Polym. Sci., Ser. C, 2018, no. 1(60), p. 122. https://doi.org/10.1134/S1811238218020212