A Green Approach for Electrochemical Thiocyanation of Nitrogen Heterocycles with KSCN at Platinum Electrode

J. Malviya J. Malviya , R. K. P. Singh R. K. P. Singh
Russian Journal of Electrochemistry
Abstract / Full Text

A novel, convenient and economical method was developed for the anodic thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds by constant potential electrolysis of potassium thiocyanate in an undivided cell under mild condition (25°C, Pt anode, CH3CN) with yields up to 91%. The products were characterized by spectroscopic methods and a mechanism was deduced from voltammetry studies. The salient features of proposed procedure ensures mild reaction conditions, shortest reaction time, accelerated rate, high yield, cost-effectiveness, selectivity, and simple work up procedure, Which provide additional advantages in the context of green chemistry.

Author information
  • Electrochemical Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, 211002, Allahabad, U.P., India

    J. Malviya & R. K. P. Singh

  1. Khazaei, A., Alizadeh, A., and Vaghei, R.G., Preparation of arylthiocyanates using N,N′-dibromo-N,N′-bis(2,5-dimethylbenzenesulphonyl)ethylenediamine and N,N-dibromo-2,5-dimethylbenzenesulphonamide in the presence of KSCN as a novel thiocyanating reagent, Molecules, 2001, vol. 6, p. 253.
  2. Kelly, T.R., Kim, M.H., and Curtis, A.D.M., An efficient conjugate hydrothiocyanation of chalcones with a task-specific ionic liquid, J. Org. Chem., 1993, vol. 58, p. 5855.
  3. Gerson, C., Sabater, J., Scuri, M., Torbati, A., Coffey, R., Abraham, J.W., Lauredo, I., Forteza, R., Wanner, A., Salathe, M., Abraham, W.M., and Conner, G.E., The lactoperoxidase system functions in bacterial clearance of airways, Am. J. Respir. Cell. Mol. Biol., 2000, vol. 22, p. 665.
  4. Batanero, B., Braba, F., and Martina, A., A general method for the preparation of 4- and 6-azaindoles, J. Org. Chem., 2002, vol. 67, p. 2369.
  5. Thierry, B., Bernard, R.L., and Maurice, M., Tetrakis (dimethylamino) ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates. A new simple access to heteroaryl–SCF2R derivatives, Tetrahedron Lett., 2001, vol. 42, no. 20, p. 3463; Thierry, B., Sylvie, L., and Bernard, R.L., Preparation of trifluoromethyl sulfides or selenides from trifluoromethyl trimethylsilane and thiocyanates or selenocyanates, Tetrahedron Lett., 1997, vol. 38, p. 65.
  6. Toste, F.D., LaRaronde, F., and Still, I.W.J., Thiocyanate as a versatile synthetic unit: efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters, Tetrahedron Lett., 1995, vol. 36, no. 17, p. 2949.
  7. Yadav, J.S., Reddy, B.V.S., Shubashree, S., and Sadashiv, K., Iodine/MeOH: a novel and efficient reagent system for thiocyanation of aromatics and heteroaromatics, Tetrahedron Lett., 2004, vol. 45, p. 2951.
  8. Lee, Y.T., Choi, S.Y., and Chung, Y.K., Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates, Tetrahedron Lett., 2007, vol. 48, p. 5673.
  9. Hagen, S.E., Vara Prasad, J.V.N., Boyer, F.E., Domagala, J.M., Ellsworth, E.L., et al., Synthesis of 5,6-dihydro-4-hydroxy-2-pyrones as HIV-1 protease Inhibitors: the profound effect of polarity on antiviral activity, J. Med. Chem., 1997, vol. 40, p. 3707; Tait, B.D., Hagen, S., Domagala, J., Ellsworth, E.L., et al., 4-hydroxy-5,6-dihydropyrones. 2. Potent non-peptide inhibitors of HIV protease, J. Med. Chem., 1997, vol. 40, p. 3781.
  10. Pezzella, A., Palma, A., Iadonisi, A., Napolitano, A., and Ischia, M., The first entry to 5,6-dihydroxy-3-mercaptoindole, 5-hydroxy-3-mercaptoindole and their 2-carbomethoxy derivatives by a mild thiocyanation/reduction methodology, Tetrahedron Lett., 2007, vol. 48, no. 22, p. 3883.
  11. Riemschneider, R., Wojahn, F., and Orlick, G., Thiocarbamates. III. Aryl thiocarbamates from aryl thiocyanates, J. Am. Chem. Soc., 1951, vol. 73, p. 5905.
  12. Kelly, T.R., Kim, M.H., and Curtis, A.D.M., Structure correction and synthesis of the naturally occurring benzothiazinone BMY, J. Org. Chem., 1993, vol. 58, p. 5855.
  13. Wood, J.L. and Adams, R., Substitution and addition reactions of thioctanogen, in Organic Reactions, Wood, J.L., Ed., New York: John Wiley and Sons, 1946, vol. 3(6), p. 240; Guy, R.G., in The Chemistry of Cyanates and Their Thio Derivatives, Patai, S., Ed., John Wiley and Sons, 1977, vol. 2(18), p. 819.
  14. Gardner, W.H., Weinberger, H., Englis, D.T., and Price, E.C., Ammonium carbamate, Inorg. Synth., 1946, vol. 1, p. 85.
  15. Mackinnon, D.L. and Farrell, A.P., The effect of 2‑(Thiocyanomethylthio) benzothiazole on juvenile coho salmon (Oncorhynchus Kisutch): sublethal toxicity testing, Environ. Toxicol. Chem., 1992, vol. 11, p. 1541.
  16. Gray, T., The Elements: a Visual Exploration of every Known Atom in the Universe, New York: Black Dog & Leventhal Publ., 2009.
  17. Unangst, P.C., Connor, D.T., Stabler, R.S., Weikert, R.J., Carethers, M.E., and Kennedy, J.A., Novel indolecarboxamidotetrazoles as potential antiallergy agents, J. Med. Chem., 1989, vol. 32, p. 1360.
  18. Zelesko, M.J., McComsey, D.F., Hageman, W.E., Nortey, S.O., Baker, C.A., and Maryanoff, B.E., Cardiac-slowing amidines containing the 3-thioindole group. Potential antianginal agents, J. Med. Chem., 1983, vol. 26, no. 2, p. 230.
  19. Malviya, J., Kala, S., Sharma, L.K., and Singh, R.K.P., Anodic synthesis of new benzofuran derivatives using active methylene group at platinum electrode, Russ. J. Electrochem., 2018, vol. 54, no. 3, p. 219; Malviya, J., Kala, S., Singh, H., and Singh, R.K.P., A simple and convenient one pot synthesis of aminoquinone derivatives via electrochemical amination of benzoquinone with secondary amines, J. Appl. Chem., 2016, vol. 4, no. 6, p. 7; Malviya, J., Kala, S., Sharma, L.K., and Singh, R.K.P., Efficient three-component one-pot synthesis of 4H-pyrans, Russ. J. Org. Chem., 2019, vol. 55, no. 5, p. 686; Malviya, J. and Singh, R.K.P., One pot three component synthesis of chromeno [2,3-d] pyrimidine derivatives: novel, simple and efficient electrochemical approach, J. Heterocycl. Chem., 2020, vol. 57, p. 39.
  20. Toste, F.D., Stefano, V.D., and Still, I.V., A versatile procedure for the preparation of aryl thiocyanates using N-thiocyanatosuccinimide (NTS), J. Synth. Commun., 2006, vol. 25, p. 1277.
  21. Yadav, J.S., Reddy, B.V.S., Shubashree, S., and Sadashiv, K., Iodine/MeOH: a novel and efficient reagent system for thiocyanation of aromatics and heteroaromatics, Tetrahedron Lett., 2004, vol. 45, p. 2951.
  22. Iranpoor, N., Firouzabadi, H., Khalili, D., and Shahin, R., A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines, Tetrahedron Lett., 2010, vol. 51, p. 3508.
  23. Iranpoor, N., Firouzabadi, H., and Azadi, R., A new diphenylphosphinite ionic liquid (IL-OPPh2) as reagent and solvent for highly selective bromination, thiocyanation or isothiocyanation of alcohols and trimethylsilyl and tetrahydropyranyl ethers, Tetrahedron Lett., 2006, vol. 47, p. 5531.
  24. Wu, J., Wu, G.L., and Wu, L.M., Thiocyanation of sromatic and heteroaromatic compounds using ammonium thiocyanate and I2O5, Synth. Commun., 2008, vol. 38, p. 2367.
  25. Bhalerao, D.S. and Akamanchi, K.G., Novel and facile transformation of N,N-disubstituted glycylamides into corresponding cyanamides by using pentavalent iodine reagents in combination with tetraethylammonium bromide, Synlett, 2007, vol. 18, p. 2815.
  26. Yadav, J.S., Reddy, B.V., and Krishna, B.B.M., IBX: a novel and versatile oxidant for electrophilic thiocyanation of indoles, pyrrole and arylamines, Synthesis, 2008, vol. 23, p. 3779.
  27. Yadav, J.S., Reddy, B.V.S., and Reddy, Y., Theilheimer’s synthetic methods of organic chemistry, J. Chem. Lett., 2008, vol. 37, p. 652.
  28. Chakrabarty, M. and Sarkar, S., A clay-mediated eco-friendly thiocyanation of indoles and carbazoles, Tetrahedron Lett., 2003, vol. 44, p. 8131.
  29. Khazaei, A., Zolfigol, M.A., Mokhlesi, M., Derakhshan Panah, F., and Sajjadifar, S., Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media, Helv. Chim. Acta, 2012, vol. 95, p. 106.
  30. Yadav, J.S., Reddy, B.V.S., Krishna, A.D., Reddy, Ch.S., and Narsaiah, A.V., Ferric(III) chloride-promoted electrophilic thiocyanation of aromatic and heteroaromatic compounds, Synthesis, 2005, vol. 6, p. 961.
  31. Nair, V., Geroge, T.G., Nair, L.G., and Panicker, S.B., A direct synthesis of aryl thiocyanates using cerium (IV) ammonium nitrate, Tetrahedron Lett., 1999, vol. 40, p. 1195.
  32. Akhlaghinia, B., Pourali, A.R., and Rahmani, M., Efficient and novel method for thiocyanation of aromatic compounds using trichloroisocyanuric acid/ammonium thiocyanate/wet SiO2, Synth. Commun., 2012, vol. 42, p. 1184.
  33. Gitkis, A. and Becker, J.Y.J., A selective one-pot electrochemical thiocyanation of methoxybenzene (anisole), Electroanal. Chem., 2006, vol. 593, p. 29.
  34. Gitkis, A. and Becker, J.Y., Anodic thiocyanation of mono- and disubstituted aromatic compounds, Electrochim. Acta, 2010, vol. 55, p. 5854.
  35. Fotouhi, L. and Nikoofar, K., Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds, Tetrahedron Lett., 2013, vol. 54, p. 2903.
  36. Jennings, P., Jones, A.C., Mount, A.R., and Thomson, A.D., Electro oxidation of 5-substituted indoles, J. Chem. Soc., 1997, vol. 93, p. 3791.
  37. Texter, J., Emulsions and Emulsion Stability, Boca Raton: CRC Press, 2005.
  38. Cauquis, G. and Pierre, G.C.R., Acad. Sci., 1968, vol. 294, p. 883.
  39. Kokorekin, V.A., Ramenskaya, G.V., Rodionova, G.M., and Petrosyan, V.A., High Technologies, Basic and Applied Researches in Physiology and Medicine, 2012.