Injection and Extraction of Atomic Hydrogen on Cu–Pd- and Ag–Pd-Alloys in Alkaline Medium

N. B. Morozova N. B. Morozova , N. D. Rodina N. D. Rodina , A. V. Vvedenskii A. V. Vvedenskii
Russian Journal of Electrochemistry
Abstract / Full Text

The behavior of alloys of the Cu–Pd- and Ag–Pd-systems in the hydrogen evolution reaction in 0.1 M KOH aqueous solution is investigated. The role of copper and silver in the processes of the atomic hydrogen insertion and ionization is revealed. The mechanism of the hydrogen evolution reaction in aqueous alkaline solution on Cu,Pd- and Ag,Pd-alloys with the electronegative component content up to 60 at % is proposed. The limiting stage of the hydrogen evolution reaction on the palladium alloys in 0.1 M KOH is shown to be the atomic hydrogen ionization complicated by its diffusion in the solid phase. The parameters of hydrogen permeability for the systems under study are calculated. The maximum hydrogen permeability is achieved on the Ag80Pd alloy. Accordingly, alloys with higher palladium content, along with pure palladium, can be successfully used as effective materials for the atomic hydrogen purification and storage.

Author information
  • Voronezh State University, 394018, Voronezh, Russia

    N. B. Morozova, N. D. Rodina & A. V. Vvedenskii

  1. Mahmood, N., Yao, Y., Zhang, J.-W., Pan, L., Zhang, X., and Zou, J.-J., Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions, Adv. Sci., 2017, vol. 5.
  2. Bugaev, A.L., Guda, A.A., Dmitriev, V.P., Lomashchenko, K.A., Pankin, I.A., Smolencev, N.Yu., Soldatov, M.A., and Soldatov, A.V., Dynamics of nanosize atomic and electronic structure of materials for hydrogen power engineering in real technology conditions, Inzhenernyj vestnik Dona (in Russian), 2012, vol. 4, p. 89.
  3. Lewis, F.A., The Hydrogen–Palladium System, London: Academic, 1967.
  4. Yun, S. and Ted Oyama, S., Correlations in palladium membranes for hydrogen separation: A review, J. Membr. Sci., 2011, vol. 375, p. 28.
  5. Sharma, R. and Sharma, Ya., Hydrogen permeance studies in ordered ternary Cu–Pd-alloys, Int. J. Hydrogen Energy, 2015, vol. 40, p. 14885.
  6. Martin, M.H., Galipaud, J., Tranchot, A., Roué, L., and Guay, D., Measurements of hydrogen solubility in CuxPd100 – x thin films, Electrochim. Acta., 2013, vol. 90, p. 615.
  7. Sharma, B. and Kim, J.-S., Pd/Ag-alloy as an application for hydrogen sensing, Int. J. Hydrogen Energy, 2017, vol. 42, p. 25446.
  8. Lukaszewski, M., Klimek, K., and Czerwinski, A., Microscopic, spectroscopic and electrochemical characterization of the surface of Pd–Ag-alloys, J. Electroanal. Chem., 2009, vol. 637, p.13.
  9. Amandusson, H., Ekedahl, L.-G., and Dannetun, H., Hydrogen permeation through surface modified Pd and PdAg membranes, J. Membr. Sci., 2001, vol. 193, p. 35.
  10. Uemiya, S., Matsuda, T., and Kikuchi, E., Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics, J. Membr. Sci., 1991, vol. 56, p. 315.
  11. Ghosh, G., Kantner, C., and Olson, G.B., Thermodynamic modeling of the Pd–X (X = Ag, Co, Fe, Ni) systems, J. Phase Equilib., 1999, vol. 20, p. 295.
  12. Shcheblykina, G.E., Bobrinskaya, E.V., and Vvedenskii, A.V., Determination of real surface area of metals and alloys by a combined electrochemical method, Prot. Met., 1998, vol. 34, p. 6.
  13. Morozova, N.B., Vvedensky, A.V., and Beredina, I.P., Phase boundary exchange and nonstationary diffusion of atomic hydrogen in Cu–Pd- and Ag–Pd-alloys. II. Experimental data, Prot. Metals Phys. Chem. Surf., 2015, vol. 51, p. 72.
  14. Lesnykh, N.N., Tutukina, N.M., and Marshakov, I.K., The effect of sulfate and nitrate ions on the passivation and activation of silver in alkaline solutions, Prot. Metals and Phys. Chem. Surf., 2008, vol. 44, p. 437.
  15. Salvarezza, R.C., Montemayor, M.C., Fatas, E., and Arvia, A.J., Electrochemical study of hydrogen absorption in polycrystalline palladium, J. Electroanal. Chem., 1991, vol. 313, p. 291.
  16. Kunze, J., Strehblow, H.-H., and Staikov, G., In situ STM study of the initial stages of electrochemical oxide formation at the Ag(111)/0.1 M NaOH (aq) interface, Electrochem. Commun., 2004, vol. 6, p. 132.
  17. Bobrinskaya, E.V., Vvedenskii, A.V., and Krashchenko, T.G., Oxygen adsorption and electrocatalysis on gold in alkaline medium: state of the problem, Kondensirovannye sredy i mezhfaznye granitsy (in Russian), 2014, vol. 16, p. 381.
  18. Morozova, N.B., Vvedenskii, A.V., and Beredina, I.P., The phase-boundary exchange and the non-steady-state diffusion of atomic hydrogen in Cu–Pd- and Ag‒Pd-alloys. Part I. Analysis of the model, Prot. Metals Phys. Chem. Surf., 2014, vol. 50, p. 699.