Examples



mdbootstrap.com



 
Article
2016

Synthesis and catalytic activity to Li/SOCl2 battery of asymmetric and symmetric binuclear metal phthalocyanines


Q. Q. JiangQ. Q. Jiang, S. W. LiS. W. Li, F. YangF. Yang, N. ZhaoN. Zhao, F. X. ZhangF. X. Zhang, J. S. ZhaoJ. S. Zhao, S. C. ZhangS. C. Zhang, J. L. WangJ. L. Wang
Russian Journal of Electrochemistry
https://doi.org/10.1134/S102319351602004X
Abstract / Full Text

In our present work, the asymmetric and symmetric binuclear metal phthalocyanines (M2(PcTN)2 and M2(PcTN)2S), battery catalysts, were synthesized through microwave reaction and characterized by EA, IR and UV-vis spectroscopy. Their catalytic activity in the Li/SOCl2 battery was evaluated by adding right amount catalysts into the electrolyte. The results indicated that the capacity of the catalyzed battery increased by 6.74–67.26% and 13.41–84.36%, and the energy increased by 9.29–65.72% and 14.77–88.15% respectively, compared with the battery without phthalocyanines.

Author information
  • Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Material Science, Northwest University, Xi’an, Shaanxi, 710069, PR ChinaQ. Q. Jiang, S. W. Li, F. Yang, N. Zhao, F. X. Zhang & J. S. Zhao
  • School of Material Science and Engineering, Beihang University, XueYuan Road No.37, HaiDian District, Beijing, 100191, PR ChinaS. C. Zhang
  • Composites Research Institute, Weinan Normal University, Weinan, 714000, PR ChinaJ. L. Wang
References
  1. Wang, S.P., Zeng, J., Zhang, H.Y., Zhao, H.G., and Liu, W., Int. J. Electrochem. Sci., 2012, vol. 7, p. 11264.
  2. Zhang, W.W., Zhang, X.J., Wang, C., Yu, G.F., and Yang, C.X., J. Therm. Anal. Calorim., 2014, vol. 116, p. 1011.
  3. Zhao, H.G., Wang, S.P., Cheng, H., Dong, K., and Liu, W., Int. J. Electrochem. Sci., 2013, vol. 8, p. 9752.
  4. Ko, Y. and Lee, C.T., J. Ind. Eng. Chem., 2012, vol. 18, p. 726.
  5. Menachem, C. and Yamin, H., J. Power Sources, 2004, vol. 136, p. 268.
  6. Xu, Z.W., Zhao, J.S., Li, H.J., Li, K.Z., Cao, Z.Y., and Lu, J.H., J. Power Sources, 2009, vol. 194, p. 1081.
  7. Xu, Z.W., Zhang, G.X., Cao, Z.Y., Zhao, J.S., and Li, H.J., J. Mol. Catal. A-Chem., 2010, vol. 318, p. 101.
  8. Bilgin, A., Ertem, B., and Gök, Y., Polyhedron, 2005, vol. 24, p. 1117.
  9. Yang, F. and Forrest, S.R., ACS. Nano., 2008, vol. 2, p. 1022.
  10. Parra, V., Bouvet, M., Brunet, J., Rodríguez-Méndez, M.L., and Saja, J.A., Thin Solid Films, 2008, vol. 516, p. 9012.
  11. Bouvet, M., Anal. Bioanal. Chem., 2006, vol. 384, p. 366.
  12. Rosenthal, I., Photochem. Photobiol., 1991, vol. 53, p. 859.
  13. Emmelius, M., Pawlowski, G., and Vollmann, H.W., Angew. Chem. Int. Edit., 1989, vol. 28, p. 1445.
  14. Yilmaz, F., Özer, M., Kani, I., and Bekaroglu, Ö., Catal. Lett., 2009, vol. 130, p. 642.
  15. Zhang, R.L., Wang, J.F., Xu, B., Huang, X.Y., Xu, Z.W., and Zhao, J.S., J. Electrochem. Soc., 2012, vol. 159, p. 704.
  16. Xu, B., Zhang, R.L., Wang, J.F., and Zhao, J.S., J. Solid State Electrochem., 2013, vol. 17, p. 2391.
  17. Zhang, R.L., Xu, B., Wang, J.F., and Zhao, J.S., J. Mater. Res., 2014, vol. 29, p. 793.
  18. Bernstein, P.A. and Lever, A.B.P., Inorg. Chem., 1990, vol. 29, p. 608.
  19. Lee, S.B., Pyun, S.I., and Lee, E.J., Electrochim. Acta, 2001, vol. 47, p. 855.
  20. Guo, B.K., Li, X.H., and Yang, S.Q., In Chemical Power Supply: the Principle and Manufacturing Techniques of Battery, Changsha: Central South University, 2003, p. 26.
  21. Abraham, K.M. and Mank, R.M., J. Electrochem. Soc., 1980, vol. 127, p. 2091.