Article
2020

Electrosynthesis of Mono- and Disulfides Based on C5–C8 Cycloalkanes, Hydrogen Sulfide, and Isomeric Dibutyl Disulfides


E. V. Shinkar’ E. V. Shinkar’ , A. V. Shvetsova A. V. Shvetsova , A. O. Okhlobystin A. O. Okhlobystin , N. T. Berberova N. T. Berberova
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193520040138
Abstract / Full Text

A method of synthesis of organic mono-, di-, and polysulfides based on electrochemical reactions of unsubstituted and alkyl–substituted cycloalkanes C5–C8 with di(n-butyl)disulfide (di(tert-butyl)disulfide) and hydrogen sulfide is developed. Three–component electrosynthesis is carried out in methylene chloride under atmospheric pressure, at the room temperature under the conditions of anodic H2S activation to a cation radical fragmented to a proton and a thiyl radical. The suggested approach with application of oxidative conversion initiation allows obtaining asymmetric mono-, disulfides and symmetric disulfides. The yield of biologically active organic sulfur derivatives depends on the electrosynthesis duration, structure of isomeric dibutyl sulfides, alicycle size and saturation degree.

Author information
  • Astrakhan State Technical University, 414056, Astrakhan, Russia

    E. V. Shinkar’, A. V. Shvetsova, A. O. Okhlobystin & N. T. Berberova

References
  1. Feng, M., Tang, B., and Liang, S., Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry, Curr. Top. Med. Chem., 2016, vol. 16, no 11, p. 1200. https://doi.org/10.2174/1568026615666150915111741
  2. Parcell, S., Sulfur in human nutrition and applications in medicine, Altern Med Rev., 2002, vol. 7, no. 1, p. 22.
  3. Hayashida, R., Kondo, K., Morita, S., Unno, K., Shintani, S., Shimizu, Y., Calvert, J.W., Shibata, R., and Murohara, T., Diallyl trisulfide augments ischemia-induced angiogenesis via an endothelial nitric oxide synthase-dependent mechanism, Circulation J., 2017, vol. 81, no. 6, p. 870. https://doi.org/10.1253/circj.CJ-16-1097
  4. Marwan, S. and Al-Nimer, M., Hydrogen sulfide donors or related derivatives are the future medicines of renal diseases, Egypt. Pharmaceut. J., 2017, vol. 16, no. 1, p. 1. https://doi.org/10.4103/1687-4315.205827
  5. St-Gelais A., Legault J., Mshvildadze V., and Pichette A., Dirchromones: Cytotoxic Organic Sulfur Compounds Isolated from Dirca palustris, J. Nat. Prod., 2015, vol. 78, no. 8, p. 1904. https://doi.org/10.1021/acs.jnatprod.5b00227
  6. Jiang, X., Sulfur atom transfer (SAT) reaction, Phosphorus, Sulfur Silicon Relat. Elem., 2017, vol. 192, no. 2, p. 169. https://doi.org/10.1080/10426507.2016.1250762
  7. Gu, X. and Zhu, Y.Z., Therapeutic applications of organosulfur compounds as novel hydrogen sulfide donors and/or mediators, Expert. Rev. Clin. Pharmacol., 2011, vol. 4, no. 1, p. 123. https://doi.org/10.1586/ecp.10.129
  8. Cerella, C., Dicato, M., Jacob, C., and Diederich M., Chemical properties and mechanisms determining the anti-cancer action of garlic-derived organic sulfur compounds, Anti-Cancer Agents Med. Chem., 2011, V. 11, no. 3, p. 267. https://doi.org/10.2174/187152011795347522
  9. Pluth, M.D., Bailey, T.S., Hammers, M.D., Hartle, M.D., Henthorn, H.A., and Steiger, A.K., Natural Products Containing Hydrogen Sulfide Releasing Moieties, Synlett, 2015, vol. 26, no. 19, p. 2633. https://doi.org/10.1055/s-0035-1560638
  10. Hosgood, S.A. and Nicholson, M.L., Hydrogen sulphide ameliorates ischaemia-reperfusion injury in an experimental model of non-heart-beating donor kidney transplantation, British J. Surgery, 2010, vol. 97, no. 2, p. 202. https://doi.org/10.1002/bjs.6856
  11. Misak, A., Grman, M., Bacova, Z.b, Rezuchova, I., Hudecova, S., Ondriasova, E., Krizanova, O., Brezova, V., Chovanec, M., and Ondrias, K., Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2, Nitric Oxide, 2018, vol. 76, no. 1, p. 136. https://doi.org/10.1016/j.niox.2017.09.006
  12. Kang, J., Xu, S., Radford, M.N., Zhang, W., Kelly, S.S., Day, J.J., and Xian, M., O→S Relay Deprotection: A General Approach to Controllable Donors of Reactive Sulfur Species, Angew. Chem. Int.Ed., 2018, vol. 57, no. 20, p. 5893. https://doi.org/10.1002/anie.201802845
  13. Kovácsa, S. and Novák, S., Oxidoreductive coupling of thiols with aryl halides catalyzed by copper on iron, Org. Biomol. Chem., 2011, vol. 9, p. 711. https://doi.org/10.1039/c0ob00397b
  14. Singh, G., Nakade, P.G., Mishra, P., Jha, P., Sen, S., and Mondal, U., Kinetic investigation on liquid–liquid–solid phase transfer catalyzed synthesis of dibenzyl disulfide with H2S-laden monoethanolamine, J. Mol. Catal. A: Chem., 2016, vol. 411, p. 78. https://doi.org/10.1016/j.molcata.2015.10.013
  15. Yu, B., Diao, Z.-F., Liu, A.-H., Han, X., Li, B., He, L.-N., and Liu, X.-M., Selective Oxidation of Sulfides to Sulfoxides with Tert-Butylnitrite as an Alternative Oxidant, Curr. Org. Synth., 2014, vol. 11, no. 1, p. 156. https://doi.org/10.2174/1570179411999140304142430
  16. Van, L.K., Hamilton, C.J., and Messens, J., Low-molecular-weight thiols in thiol-disulfide exchange, Antioxid. Redox Signaling, 2013, vol. 18, no. 13, p. 1642. https://doi.org/10.1089/ars.2012.4964
  17. Guo, S., He, W., Xiang, J., and Yuan, Ya., Ruthenium-catalyzed direct thiolation of alkanes and ethers using arylsulfonyl chlorides as a sulfur source, Tetrahedron Lett., 2015, vol. 56, no. 17, p. 2159. https://doi.org/10.1016/j.tetlet.2015.01.068
  18. Zhao, J., Fang, H., Song, R., Zhou, J., Han, J., and Pan, Y., Metal-free oxidative C(sp3)–H bond functionalization of alkanes and alkylation-initiated radical 1,2-aryl migration in α,α-diaryl allylic alcohols, Chem. Commun., 2015, vol. 51, no. 3, p. 599. https://doi.org/10.1039/C4CC07654K
  19. Guo, S., He, W., Xiang, J., and Yuan, Ya., Palladium-catalyzed thiolation of alkanes and ethers with arylsulfonyl hydrazides, Chem. Commun., 2014, vol. 50, p. 8578. https://doi.org/10.1039/C4CC02876G
  20. Saravanan, P. and Anbarasan, P., Palladium Catalyzed Aryl(alkyl)thiolation of Unactivated Arenes, Org. Lett., 2014, vol. 16, no. 3, p. 848. https://doi.org/10.1021/ol4036209
  21. Mishra, P., Kumari, S., and Sen, S., Kinetic modeling on ionic liquid mediated bi-liquid phase transfer catalyzed synthesis of bis-(2-phenylethyl) sulfide with H2S-rich methyldiethanolamine, J. Mol. Liq., 2018, vol. 271, p. 580. https://doi.org/10.1016/j.molliq.2018.09.038
  22. Moiseev, I.I., “Green Chemistry”: the trajectory of development, Russ. Chem. Rev., 2013, vol. 82, no. 7, p. 616. https://doi.org/10.1070/RC2013v082n07ABEH004393
  23. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., and Abdulaeva, V.F., Anodic activation of hydrogen sulfide in reaction with cyclopentane, Russ. J. General Chem., 2015, vol. 85, no. 4, p. 998. https://doi.org/10.1134/S1070363215040416
  24. Shinkar, E.V., Shvetsova, A.V., Sediki D.B., and Berberova, N.T., Redox activation of hydrogen sulfide in the reaction with cycloheptane, Russ. J. Electrochem., 2015, vol. 51, no. 11, p. 1046. https://doi.org/10.1134/S1023193515110178
  25. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., Shvetsova, A.V., and Sediki, D.B., Electrosynthesis of biologically active dicycloalkyl di- and trisulfides involving an H2S–S8 redox system, Russ. Chem. Bull., 2018, vol. 67, no. 1, p. 108. https://doi.org/10.1007/s11172-018-2044-4
  26. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., and Pashchenko, K.P., Redox-mediators of hydrogen sulfide oxidation in reactions with cycloalkanes, Dokl. Chem., 2015, vol. 465, no. 2, p. 295. https://doi.org/10.1134/S0012500815120058
  27. Berberova, N.T., Shinkar’, E.V., Smolyaninov, I.V., Kuz’min, V.V., Shvetsova, A.V., and Sediki, D.B., 3,6-Di-tert-butyl-o-seminquinolate complexes Cr(III), In(III) as redox-mediators of hydrogen sulfide oxidation in reactions with cycloalkanes, Russ. J. Coord. Chem., 2017, vol. 43, no. 9, p. 578. https://doi.org/10.1134/S107032841707003X
  28. Shinkar’, E.V., Kudryavtsev, D.A., Pashchenko, K.P., Berberova, N.T., and Okhlobystina, A.V., Thiolation of cycloalkenes C5, C6 by redox-activation of hydrogen sulfide, Mendeleev Commun., 2017, vol. 27, p. 1, https://doi.org/10.1016/j.mencom.2017.03.025
  29. Berberova, N.T., Shinkar, Ye.V., Smolyaninov, I.V., and Okhlobystina, A.V., Serovodorod I alkantioly v sinteze biologicheski aktivnykh organicheskikh soedinenii sery (Hydrogen sulfide and alkanethiols in the synthesis of biologically active organic sulfur compounds), Rostov-on-Don: Southern Scientific Center of RAS, 2016.
  30. Letichevskaya, N.N., Shinkar’, E.V., Berberova, N.T., and Okhlobystin, O.Yu., Radical Cation of Hydrogen Sulfide as a Superacid, Russ. J. General Chem., 1996, vol. 66, no. 11, p. 1739.
  31. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley Interscience, 1972.
  32. Organic Electrochemistry, Baizer, M.M. and Lund, H., Eds., New York, Basel: Marcel Dekker Inc., 1983.
  33. Berberova, N.T. and Shinkar’, E.V., The radical cation of hydrogen sulfide and related organic reactions, Russ. Chem. Bull., 2000, vol. 49, no. 7, p. 1178. https://doi.org/10.1007/BF02495758
  34. Berberova, N.T. and Shinkar, E.V., Smolyaninov, I.V., and Okhlobystin, A.O., Vovlechenie serovodoroda, tiolov i polisul’fanov v sintez organicheskikh soedinenii sery (The involvement of hydrogen sulfide, thiols and polysulfans in the synthesis of organic sulfur compounds), Rostov-on-Don: Southern Scientific Center of RAS, 2009.
  35. Organic Electrochemistry, Lund, H. and Hammerich, O., Eds., New York: Marcel Dekker Inc., 4th ed., 2001, p. 621.