Ion Discharge in Electrochemical Deposition of CoNiFe Films

R. D. Tikhonov R. D. Tikhonov , A. A. Cheremisinov A. A. Cheremisinov , M. R. Tikhonov M. R. Tikhonov
Russian Journal of Electrochemistry
Abstract / Full Text

Heating of chloride electrolyte to a temperature of 70°C provides normal codeposition of the components of СоNiFe alloy as a result of discharge of iron, cobalt, and nickel ions at a high cathodic current density. The chloride electrolyte with filtration and correction of pH value by hydrochloric acid ensures the electrochemical deposition of CoNiFe films at a concentration ratio cСо : cNi : cFe = 1 : 1 : 1. The mechanism of abnormal deposition of Co, Fe, and Ni is due to the differences in the atom ionization and ion mobility. The obtained films of СоNiFe are free of mechanical stresses, exhibit uniform structure and high magnetic parameters without a high temperature of annealing. The electrochemical deposition enables reproducible production of СоNiFe films.

Author information
  • Scientific-Manufacturing Complex “Technological Center”, Zelenograd, Moscow, Russia

    R. D. Tikhonov & A. A. Cheremisinov

  • National Research University of Electronic Technology (MIET), Zelenograd, Moscow, Russia

    M. R. Tikhonov

  1. Sverdlov, Ye., Rosenberg, Yu., Rosenberg, Yu.I., Zmood, R., Erlich, R., Natan, S., and Shacham-Diamand, Yo., The electrodeposition of cobalt–nickel–iron high aspect ratio thick film structures for magnetic MEMS applications, Microelectron. Eng., 2004, vol. 76, p. 258.
  2. Huang, Q. and Podlaha, E.J., Simulation of pulsed electrodeposition for giant magnetoresistance FeCoNiCu/Cu multilayers, J. Electrochem. Soc., 2004, vol. 151, p. 119.
  3. Ohashi, K., Yasue, Y., Saito, M., Yamada, K., Osaka, T., Takai, M., and Hayashi, K., Newly developed inductive write head with electroplated CoNiFe thin film, IEE Trans. Magn., 1998, vol. 34, p. 1432.
  4. Liu, X., Evans, P., and Zangari, G., Electrodeposition Co–Fe and Co–Fe–Ni alloy films for magnetic recording write heads, IEEE Trans. Magn., 2000, vol. 36, p. 5410.
  5. Tobakovic, I., Inturi, V., and Riemer, S., Composition, structure, stress, and coercivity of electrodeposited soft magnetic CoNiFe films, J. Electrochem. Soc., 2002, vol. 149, p. 18.
  6. Tikhonov, R., Congruent Electrochemical Deposition of NiFe Alloy, Lambert Acad. Publ., 2019, p. 193.
  7. Tikhonov, R.D., Electrochemical deposition of NiFe alloy at a temperature of 70°C, Russ. J. Electrochem., 2020, vol. 56, p. 611.
  8. Vinokurov, E.G., and Bondar’, V.V., Model’nyye predstavleniya dlya opisaniya i prognozirovaniya elektroosazhdeniya splavov (Model Concepts for Describing and Predicting Alloy Electrodeposition), Moscow: VINITI, 2009.
  9. Vinokurov, E.G., Physicochemical basis for choosing ligands in development of solution compositions for electrodeposition of alloys and multivalent metals, Doctoral (Chem.) Dissertation, Moscow, 2010.
  10. Lukomskii, Yu.Ya. and Gamburg, Yu.D., Fizikokhimicheskie osnovy elektrokhimii: Uchebnik (Physicochemical Foundations of Electrochemistry: A Handbook), Dolgoprudny: “Intellekt”, 2008, p. 424.
  11. Vagramyan, A.T. and Fatueva, T.A., Joint discharge of metal ions in real conjugated systems, Dokl. Akad. Nauk SSSR, 1960, vol. 135, p. 1413.
  12. Shekhanov, R.F., Yablokov, P.S., and Gridchin, S.N., Electrodeposition of nickel–cobalt alloys, Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol., 2007, vol. 50, no. 2, p. 47.
  13. Tikhonov, R.D., Cheremisinov, A.A., Gorelov, D.V., and Kazakov, Yu.V., Magnetic properties of CoNiFe obtained by electrochemical deposition according to the Tikhonov method, Nano-Microsyst. Technol., 2020, vol. 22, no. 3, p. 123.
  14. Yang, Y., Preparation of Fe–Co–Ni ternary alloys with electrodeposition, Int. J. Electrochem. Sci., 2015, vol. 10, p. 5164.
  15. Yanai, T., Koda, K., Kaji, J., Aramaki, H., Eguchi, K., Takashima, K., Nakano, M., and Fukunaga, H., Electroplated Fe–Co–Ni films prepared in ammonium-chloride-based plating baths, AIP Adv., 2018, vol. 8, p. 056127.