Stability and Functional Properties of Fluorite-Like Ce0.6 –xLa0.4PrxO2 – δ as Electrode Components for Solid Oxide Fuel Cells

A. I. Ivanov A. I. Ivanov , I. I. Zver’kova I. I. Zver’kova , E. V. Tsipis E. V. Tsipis , S. I. Bredikhin S. I. Bredikhin , V. V. Kharton V. V. Kharton
Russian Journal of Electrochemistry
Abstract / Full Text

In order to evaluate applicability of Ce0.6 –хLa0.4PrхO2 – δ (x = 0–0.2) fluorites for protective interlayers and electrode components for intermediate-temperature solid oxide fuel cells (SOFCs), their thermal expansion, chemical interaction with solid electrolyte material, tolerance towards reduction and electrochemical behavior were studied. The incorporation of praseodymium into Ce0.6La0.4O2 – δ was found to increase unit cell parameters and thermal expansion coefficients, from (13.2 ± 0.3) × 10–6 to (18.5 ± 0.8) × 10–6 К–1 at intermediate temperatures. Increasing total concentration of rare-earth cations in the fluorite-like cerium dioxide structure also correlates with decreasing thermodynamic stability under both oxidizing and reducing conditions. As a result, high-temperature chemical interaction between the Pr-doped materials and lanthanum gallate-based solid electrolyte becomes more intensive with respect to Ce0.6La0.4O2 – δ, whilst reduction of Pr-containing solid solution may leads to segregation of a secondary phase with the C-type structure. The combination of these factors deteriorates compatibility of the interlayers with other SOFC components. Consequently, the overpotentials of PrBaFe1.2Ni0.8O6 – δ cathodes in the electrochemical cells with (La0.9Sr0.1)0.98Ga0.8Mg0.2O3 – δ solid electrolyte were –42 and –143 mV in O2 atmosphere at the current density –58 mA/cm2 and 1073 K when the interlayers of Ce0.6La0.4O2 – δ or Ce0.5La0.4Pr0.1O2 – δ were used, respectively.

Author information
  • Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    A. I. Ivanov, I. I. Zver’kova, E. V. Tsipis, S. I. Bredikhin & V. V. Kharton

  1. Bredikhin, S.I., Golodnitskii, A.E., Drozhzhin, O.A., Istomin, S.Ya., Kovalevskii, V.P., and Filippov, S.P., Statsionarnye energeticheskie ustanovki s toplivnymi elementami: materialy, tekhnologii, rynki (Stationary Power Systems with Fuel Cells: Materials, Technologies, Markets), Moscow: NTF “Energoprogress” (EEEK), 2017.
  2. Abdalla, A.M., Hossain, Sh., Azad, A.T., Petra, P.M.I., Begum, F., Eriksson, S.G., and Azad, A.K., Nanomaterials for solid oxide fuel cells: A review, Renewable and Sustainable Energy Rev., 2018, vol. 82, p. 353.
  3. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, J. Solid State Electrochem., 2008, vol. 12, p. 1039.
  4. Burmistrov, I.N., Agarkov, D.A., Korovkin, E.V., Yalovenko, D.V., and Bredikhin, S.I., Fabrication of membrane–electrode assemblies for solid-oxide fuel cells by joint sintering of electrodes at high temperature, Russ. J. Electrochem., 2017, vol. 53, p. 873.
  5. Kuritsyna, I., Sinitsyn, V., Melnikov, A., Fedotov, Yu., Tsipis, E., Viskup, A., Bredikhin, S., and Kharton, V., Oxygen exchange, thermochemical expansion and cathodic behavior of perovskite-like Sr0.7Ce0.3MnO3 – δ, Solid State Ionics, 2014, vol. 262, p. 349.
  6. Kuritsyna, I.E., Sinitsyn, V.V., Fedotov, Yu.S., Bredikhin, S.I., Tsipis, E.V., and Kharton, V.V., Stability and functional properties of Sr0.7Ce0.3MnO3 – δ as cathode material for solid oxide fuel cells, Russ. J. Electrochem., 2014, vol. 50, p. 713.
  7. Wan, J., Goodenough, J.B., and Zhu, J.H., Nd2 ‒ xLaxNiO4 + δ, a mixed ionic/electronic conductor with interstitial oxygen, as a cathode material, Solid State Ionics, 2007, vol. 178, p. 281.
  8. Wan, J.-H., Yan, J.-Q., and Goodenough, J.B., LSGM-based solid oxide fuel cell with 1.4 W/cm2 power density and 30 day long-term stability, J. Electrochem. Soc., 2005, vol. 152, p. A1511.
  9. Ma, Q., Tietz, F., Leonide, A., and Ivers-Tiffée, E., Anode-supported planar SOFC with high performance and redox stability, Electrochem. Commun., 2010, vol. 12, p. 1326.
  10. Ivanov, A.I., Kolotygin, V.A., Tsipis, E.V., Bredikhin, S.I., and Kharton, V.V., Electrical conductivity, thermal expansion and electrochemical properties of perovskites PrBaFe2 –xNixO5 + δ, Russ. J. Electrochem., 2018, vol. 54, p. 533.
  11. Shimura, K., Nishino, H., Kakinuma, K., Brito, M.E., and Uchida, H., Effect of samaria-doped ceria (SDC) interlayer on the performance of La0.6Sr0.4Co0.2Fe0.8O3 – δ/SDC composite oxygen electrode for reversible solid oxide fuel cells, Electrochim. Acta, 2017, vol. 225, p. 114.
  12. Somekawa, T., Matsuzaki, Y., Tachikawa, Y., Taniguchi, S., and Sasaki, K., Characterization of yttrium-doped ceria with various yttrium concentrations as cathode interlayers of SOFCs, Ionics, 2017, vol. 23, p. 95.
  13. Kharton, V.V., Viskup, A.P., Figueiredo, F.M., Naumovich, E.N., Yaremchenko, A.A., and Marques, F.M.B., Electron–hole conduction in Pr-doped Ce(Gd)O2 – δ by faradaic efficiency and emf measurements, Electrochim. Acta., 2001, vol. 46, p. 2879.
  14. Shimonosono, T., Hirata, Y., Ehira, Yu., Sameshima, S., Horita, T., and Yokokawa, H., Electronic conductivity measurement of Sm- and La-doped ceria ceramics by Hebb–Wagner method, Solid State Ionics, 2004, vol. 174, p. 27.
  15. Xiong, Yu., Yamaji, K., Horita, T., Sakai, N., and Yokokawa, H., Hole and electron conductivities of 20 mol % REO1.5 doped CeO2 (RE = Yb, Y, Gd, Sm, Nd, La), J. Electrochem. Soc., 2004, vol. 151, p. A407.
  16. Lenser, Ch., Gunkel, F., Sohn, Y.J., and Menzler, N.H., Impact of defect chemistry on cathode performance: A case study of Pr-doped ceria, Solid State Ionics, 2018, vol. 314, p. 204.
  17. Ren, Y., Ma, J., Ai, D., Zan, Q., Lin, X., and Deng, Ch., Fabrication and performance of Pr-doped CeO2 nanorods-impregnated Sr-doped LaMnO3–Y2O3-stabilized ZrO2 composite cathodes for intermediate temperature solid oxide fuel cells, J. Mater. Chem., 2012, vol. 22, p. 25042.
  18. Chiba, R., Komatsu T., Orui, H., Taguchi, H., Nozawa, K., and Arai, H., SOFC Cathodes composed of LaNi0.6Fe0.4O3 and Pr-doped CeO2, Electrochem. Solid-State Lett., 2009, vol. 12, p. B69.
  19. Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials, Catal. Rev., 2006, vol. 38, p. 439.
  20. Shuk, P. and Greenblatt, M., Hydrothermal synthesis and properties of mixed conductors based on Ce1 –xPrxO2 – δ solid solutions, Solid State Ionics, 1999, vol. 116, p. 217.
  21. Fagg, D.P., Marozau, I.P., Shaula, A.L., Kharton, V.V., and Frade, J.R., Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8 –xPr0.2O2 – δ, x = 0, 0.15, 0.2, J. Solid State Chem., 2006, vol. 179, p. 3347.
  22. Fagg, D.P., Kharton, V.V., Shaula, A., Marozau, I.P., and Frade, J.R., Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr,Zr)O2 – δ, Solid State Ionics, 2005, vol. 176, p. 1723.
  23. Chiba, R., Taguchi, H., Komatsu, T., Orui, H., Nozawa, K., and Arai, H., High temperature properties of Ce1 –xPrxO2 – δ as an active layer material for SOFC cathodes, Solid State Ionics, 2011, vol. 197, p. 42.
  24. Bishop, S.R., Stefanik, T.S, and Tuller, H.L., Defects and transport in PrxCe1 –xO2 – δ: Composition trends, J. Mater. Res., 2012, vol. 27, p. 2009.
  25. Ivanov, A.I., Zagitova, A.A., Bredikhin, S.I., and Kharton, V.V., Synthesis and mixed conductivity of Ce1 –xyLaxPryO2 – δ for catalytically active protective interlayers of solid oxide fuel cells, Al’tern. Energ. Ekol., 2014, no. 20(160), p. 15.
  26. Ivanov, A.I., Kolotygin, V.A., Patrakeev, M.V., Markov, A.A., Bredikhin, S.I., and Kharton, V.V., Electrical conductivity, oxygen nonstoichiometry and transport properties of mixed-conducting Ce0.6 –xLa0.4PrxO2 – δ, Russ. J. Electrochem., 2018, vol. 54, p. 486.
  27. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., 1976, vol. A32, p. 751.
  28. Bishop, S.R., Marrocchelli, D., Chatzichristodoulou, C., Perry, N.H., Mogensen, M.B., Tuller, H.L., and Wachsman, E.D., Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices, Annual Rev. Mater. Res., 2014, vol. 44, p. 205.
  29. Heidenreich, M., Kaps, Ch., Simon, A., Schulze-Küppers, F., and Baumann, S., Expansion behaviour of (Gd, Pr)-substituted CeO2 in dependence on temperature and oxygen partial pressure, Solid State Ionics, 2015, vol. 283, p. 56.
  30. Chatzichristodoulou, C., Hendriksen, P.V., and Hagen, A., Defect chemistry and thermomechanical properties of Ce0.8PrxTb0.2 –xO2 – δ, J. Electrochem. Soc., 2010, vol. 157, p. B299.
  31. Wei-ping, G., Rui, Z., and Zhong-sheng, C., Thermodynamic modelling and applications of Ce–La–O phase diagram, Trans. Nonferrous Met. Soc. China, 2011, vol. 21, p. 2671.
  32. Kharton, V.V., Tsipis, E.V., Marozau, I.P., Viskup, A.P., Frade, J.R., and Irvine, J.T.S., Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3 – δ, Solid State Ionics, 2007, vol. 178, p. 101.