Electrochemical Properties of Cobalt(II), Nickel(II) and Iron(II) Ions in the Presence of 2,2'-Bipyridine

A. F. Khusnuriyalova A. F. Khusnuriyalova , A. V. Sukhov A. V. Sukhov , G. E. Bekmukhamedov G. E. Bekmukhamedov , D. G. Yakhvarov D. G. Yakhvarov
Russian Journal of Electrochemistry
Abstract / Full Text

The electrochemical properties of cobalt(II), nickel(II), and iron(II) ions are studied by cyclic voltammetry in the presence of increasing amounts of 2,2'-bipyridine (bpy). It is shown that the addition of insignificant amounts of bpy (10–50 mol %) to solutions containing cobalt(II), nickel(II), and iron(II) ions leads to stabilization of the reduced metal(0) forms and prevents both their electrochemical deposition and the formation of unsoluble metal associates.

Author information
  • Kazan (Volga Region) Federal University, 420008, Kazan, Russia

    A. F. Khusnuriyalova, A. V. Sukhov, G. E. Bekmukhamedov & D. G. Yakhvarov

  • Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088, Kazan, Russia

    A. F. Khusnuriyalova, A. V. Sukhov, G. E. Bekmukhamedov & D. G. Yakhvarov

  1. Dur an Pachon, L. and Rothenberg, G., Transition-metal nanoparticles: synthesis, stability and the leaching issue, Appl. Organometal. Chem., 2008, vol. 22, p. 288.
  2. Akbarzadeh, A., Samiei, M., and Davaran, S., Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett., 2012, vol. 7, p. 144.
  3. Aiken III, J.D. and Finke, R.G., A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis, J. Mol. Catal. A: Chem., 1999, vol. 145, p. 1.
  4. Guczi, L., Peto, G., Beck, A., and Paszti, Z., Electronic structure and catalytic properties of transition metal nanoparticles: the effect of size reduction, Top. Catal., 2004, vol. 29, p. 129.
  5. Yoon, M., Kim, Y., Kim, Y.M., Yoon, H., Volkov, V., Avilov, A., Park, Y.J., and Park, I.-W., Superparamagnetism of transition metal nanoparticles in conducting polymer film, J. Magn. Magn. Mater., 2004, vol. 272, p. 1259.
  6. Arda, L., Ozturk, O., Asikuzun, E., and Ataoglu, S., Structural and mechanical properties of transition metals doped ZnMgO nanoparticles, Powder Technol., 2013, vol. 235, p. 479.
  7. Aliofkhazraei, M., Handbook of Nanoparticles, Springer, 2015, vol. 2.
  8. Kim, K.-R., Kang, J., and Chae, K.-J., Improvement in methanogenesis by incorporating transition metal nanoparticles and granular activated carbon composites in microbial electrolysis cells, Int. J. Hydrogen Energy, vol. 42, p. 27623.
  9. Lu, A.-H., Salabas, E.L., and Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 2007, vol. 46, p. 1222.
  10. Borchardt, L., Hasche, F., Lohe, M.R., Oschatz, M., Schmidt, F., Kockrick, E., Ziegler, C., Lescouet, T., Bachmatiuk, A., Büchner, B., Farrusseng, D., Strasser, P., and Kaskel, S., Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties, Carbon, 2012, vol. 50, p. 1861.
  11. Huang, X., Xiao, X., Zhang, W., Fan, X., Zhang, L., Cheng, C., Li, S., Ge, H., Wang Q., and Chen L., Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 4019.
  12. Kleibert, A., Passig, J., Meiwes-Broer, K.-H., Getzlaff, M., and Bansmann, J., Structure and magnetic moments of mass-filtered deposited nanoparticles, J. Appl. Phys., 2007, vol. 101, p. 114318.
  13. Kumar, S., Kumar, S., Jain, S., and Verma, N.K., Magnetic and structural characterization of transition metal co-doped CdS nanoparticles, Appl Nanosci, 2012, vol. 2, p. 127.
  14. Hu, Y., Ji, C., Wang, X., Huo, J., Liu, Q., and Song, Y., The structural, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) heteronanostructure, Sci. Rep., 2017, vol. 7, p. 16485.
  15. Wobbe, M.C.C. and Zwijnenburg, M.A., Chemical trends in the optical properties of rocksalt nanoparticles, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 28892.
  16. Ibrahim, E.M.M., Abu-Dief, A.M., Elshafaie, A., and Ahmed, A.M., Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni–Co–O nanoparticles and investigation of their conduction phenomena, Mater. Chem. Phys., 2017, vol. 192, p. 41.
  17. Fan, D., Feng, J., Zhang, S., Lv, X., Gao, T., Xie, J., and Liu, J., Synthesis, structure, and magnetic properties of Ni and Co nanoparticles encapsulated by few-layer h-BN, J. Alloys Compd., vol. 689, p. 153.
  18. Gual, A., Godard, C., Castillon, S., and Claver, C., Soluble transition-metal nanoparticles-catalysed hydrogenation of arenes, Dalton Trans., 2010, vol. 39, p. 11499.
  19. Scholten, J.D., Leal, B.C., and Dupont, J., Transition metal nanoparticle catalysis in ionic liquids, ACS Catal., 2012, vol. 2, p. 184.
  20. Willing, S., Lehmann, H., Volkmann, M., and Klinke, C., Metal nanoparticle film–based room temperature Coulomb transistor, Sci. Adv., 2017, vol. 3, p. 1603191.
  21. Rao, C.N.R., Kulkarni, G.U., and Edwards P.P., Metal nanoparticles and their assemblies, Chem. Soc. Rev., 2000, vol. 29, p. 27.
  22. Popova, A.N., Synthesis and characterization of iron-cobalt nanoparticles, J. Phys. Conf. Ser., 2012, p. 345.
  23. Gusev, A.I. and Rempel, A.A., Nanocrystalline Materials, Cambridge: Cambridge International Science, 2004.
  24. Gusev, A.I., Nanokristallicheskie materialy: metody polucheniya i svoistva (Nanocrystalline Materials: Methods of Production and Properties), Yekaterinburg: Ural RAS, 1998.
  25. Ershov, B.G., Nanoparticles of metals in aqueous solutions: electronic, optical and catalytic properties, Ross. Khim. Zh., 2002, vol. 45, no. 3, p. 20.
  26. Ying, J. Yi-Ru, Nanostructured Materials, Academic Press, 2001.
  27. Tretyakov, Y.D., The self-assembly processes in the chemistry of materials, Russ. Chem. Rev., 2003, vol. 72, no 8, p. 651.
  28. Yanilkin, V.V., Nasretdinova, G.R., and Kokorekin, V.A., Mediated electrochemical synthesis of metal nanoparticles, Russ. Chem. Rev., 2018, vol. 87, p. 1080.
  29. Yanilkin, V.V., Nasretdinova, G.R., Osin, Y.N., and Salnikov, V.V., Anthracene mediated electrochemical synthesis of metallic cobaltnanoparticles in solution, Electrochim. Acta, 2015, vol. 168, p. 82.
  30. Khusnuriyalova, A.F., Petr, A., Gubaidullin, A.T., Sukhov, A.V., Morozov, V.I., Büchner, B., Kataev, V., Sinyashin, O.G., and Yakhvarov, D.G., Electrochemical generation and observation by magnetic resonance of superparamagnetic cobalt nanoparticles, Electrochim. Acta, 2018, vol. 260, p. 324.
  31. Dunsch, L. and Petr, A., In situ ESR-Untersuchungen an elektrochemischen Systemen, Ber. Bunsen-Ges., 1993, vol. 97, p. 436.
  32. Iwasita, T. and Giordano, M.C., Kinetics of the bromine-tribromide redox processes on platinum electrodes in acetonitrile solutions, Electrochim. Acta, 1969, vol. 14, p. 1045.
  33. Popov, A.I. and Geske, D.H., Studies on the chemistry of halogen and of polyhalides. XVI. Voltammetry of bromine and interhalogen species in acetonitrile, J. Am. Chem. Soc., 1958, vol. 80, p. 1340.
  34. Budnikova, Yu.G., Yakhvarov, D.G., Morozov, V.I., Kargin, Yu.M., Il’yasov, A.V., Vyakhireva, Yu.N., and Sinyashin, O.G., Electrochemical reduction of nickel complexes with 2,2'-bipyridine, Russ. J. Gen. Chem., 2002, vol. 72, p. 168.
  35. Carter, M.T., Rodriguez, M., and Bard, A.J., Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine, J. Am. Chem. Soc., 1989, vol. 111, p. 8901.
  36. Mun, J., Lee, M.-J., Park, J.-W., Oh, D.-J., Lee, D.-Y., and Doo, S.-G., Non-aqueous redox flow batteries with nickel and iron tris(2,2-bipyridine) complex electrolyte, Electrochem. Solid-State Lett., 2012, vol. 15, p. A80.
  37. Buriez, O., Durandetti, M., and Perichon, J., Mechanistic investigation of the iron-mediated electrochemical formation of β-hydroxyesters from α-haloesters and carbonyl compounds, J. Electroanal. Chem., 2005, vol. 578, p. 63.