Examples



mdbootstrap.com



 
Article
2020

New Electrode Materials for Symmetrical Solid Oxide Fuel Cells Based on Perovskites (La,Ca)(Fe,Co,Mg,Mo)O3 – δ


A. V. MorozovA. V. Morozov, S. Ya. IstominS. Ya. Istomin, D. A. StrebkovD. A. Strebkov, N. V. LyskovN. V. Lyskov, M. M. AbdullaevM. M. Abdullaev, E. V. AntipovE. V. Antipov
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193520020111
Abstract / Full Text

The conductivity of perovskites La0.3Ca0.7Fe0.6Mg0.175Mo0.225O3 – δ (LCF6) and La0.3Ca0.7Fe0.5Mg0.25Mo0.25O3 – δ (LCF5) is studied in the temperature interval of 573–1173 К at varied oxygen partial pressure. It is found that when going from air to the reductive atmosphere (8% Ar/H2), the conductivity of both samples at 1173 K increases from 4.6 to 25 S/cm for LCF6 and from 0.5 to 10 S/cm for LCF5. For LCF5, the conductivity is shown to be virtually independent of the oxygen partial pressure throughout the studied intervals of temperature and partial pressure, whereas for LCF6 two regions are observed. The conductivity of LCF5 remains constant at the cyclic change of the atmosphere from air to the reductive atmosphere and back. The method of impedance spectroscopy is used for studying the electrochemical behavior in air of the porous electrode based on (La,Ca)(Fe,Mg,Mo)O3 – δ deposited on the solid electrolyte of Ce0.8Gd0.2O1.9 (GDC). The polarization resistance of the electrode/electrolyte interface (Rη) is found to be 2.7 and 3.6 Ω cm2 for electrodes of LCF5 and LCF6, respectively, at 1173 K. The partial substitution of Co for Fe allows the Rη value of La0.3Ca0.7Fe0.45Co0.05Mg0.25Mo0.25O3 – δ and La0.3Ca0.7Fe0.55Co0.05Mg0.175Mo0.225O3 – δ to be decreased to ∼1.2 Ω cm2. Moreover, these materials demonstrate the CTE values close to that of GDC and also exhibit the acceptable conductivity in both air and reductive atmosphere and, hence, can be recommended for using as the electrode material in symmetrical solid-oxide fuel cells.

Author information
  • Moscow State University, Faculty of Chemistry, Leninskie Gory, 119992, Moscow, RussiaA. V. Morozov, S. Ya. Istomin, D. A. Strebkov, M. M. Abdullaev & E. V. Antipov
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, RussiaN. V. Lyskov
References
  1. Bastidas, D.M., Tao, S., and Irvine, J.T.S., A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes, J. Mater. Chem., 2006, vol. 16, p. 1603.
  2. Ruiz-Morales, C., Marrero-López, D., Canales-Vázquez, J., and Irvine, J.T.S., Symmetric and reversible solid oxide fuel cell, RSC Adv., 2011, vol. 1, p. 1403.
  3. Su, C., Wang, W., Liu, M., Tadé, M.O., and Shao, Z., Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes, Adv. Energy Mater., 2015, vol. 5, p. 1.
  4. Ruiz-Morales, J.C., Canales-Vázquez, J., Peña-Martínez, J., Marrero-López, D., and Núñez, P., On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3 – δ as both anode and cathode material with improved microstructure in solid oxide fuel cells, Electrochim. Acta, 2006, vol. 52, p. 278.
  5. Zheng, Y., Zhang, C., Ran, R., Cai, R., Sao, Z., and Farrusseng, D., A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3 – δ perovskite oxide as both the anode and cathode, Acta Mater., 2009, vol. 57, p. 1165.
  6. Canales-Vázquez, J., Ruiz-Morales, J.C., Marrero-López, D., Peña-Martinez, J., Núñez, P., and Gomez-Romero, P., Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs), J. Power Sources, 2007, vol. 171, p. 552.
  7. Fagg, D.P., Kharton, V.V., Frade, J.R., and Ferreira, A.A.L. Stability and mixed ionic–electronic conductivity of (Sr,La)(Ti,Fe)O3 – δ perovskites, Solid State Ionics, 2003, vol. 156, p. 45.
  8. Park, C.Y. and Jacobson, A.J., Electrical conductivity and oxygen nonstoichiometry of La0.2Sr0.8Fe0.55Ti0.45O3 – δ, J. Electrochem. Soc., 2005, vol. 152, p. 65.
  9. Liu, Q., Dong, X., Xiao, G., Zhao, F., and Chen, F., Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles, Adv. Mater., 2010, vol. 22, p. 5478.
  10. Zhang, L., Liu, Y., Zhang, Y., Xiao, G., Chen, F., and Xia, C., A novel electrode material for symmetrical SOFCs, Electrochem. Commun., 2011, vol. 13, p. 711.
  11. Goodenough, J.B., Metallic Oxides in Progress in Solid State Chemistry, Reiss, H., Ed., Oxford: Pergamon, 1971, vol. 5, p. 145.
  12. Istomin, S.Ya., Morozov, A.V., Abdullayev, M.M., Batuk, M., Hadermann, J., Kazakov, S.M., Sobolev, A.V., Presniakov, I.A., and Antipov, E.V., High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3 – δ perovskites as prospective electrode materials for symmetrical SOFC, J. Solid State Chem., 2018, vol. 258, p. 1.
  13. Merkulov, O.V., Markov, A.A., Patrakeev, M.V., Leonidov, I.A., Shalaeva, E.V., Tyutyunnik, A.P., and Kozhevnikov, V.L., Structural features and high-temperature transport in SrFe0.7Mo0.3O3 – δ, J. Solid State Chem., 2018, vol. 258, p. 447.
  14. Fagg, D.P., Waerenborgh, J.C., Kharton, V.V., and Frade, J.R., Redox behavior and transport properties of La0.5 –xSr0.5 –xFe0.4Ti0.6O3 – δ (0 < x < 0.1) validated by Mössbauer spectroscopy, Solid State Ionics, 2002, vol. 146, p. 87.
  15. Hong, D.J.L. and Smyth, D.M., Defect chemistry of La2 –xSrxCuO4 –x/2 (0 < x ≤ 1), J. Solid State Chem., 1993, vol. 102, p. 250.
  16. Hong, D.J.L. and Smyth, D.M., Defect chemistry of undoped La2CuO4, J. Solid State Chem., 1992, vol. 97, p. 427.
  17. Merkulov, O.V., Naumovich, E.N., Patrakeev, M.V., Markov, A.A., Bouwmeester, H.J.M., Leonidov, I.A., and Kozhevnikov, V.L., Oxygen nonstoichiometry and defect chemistry of perovskite-structured SrFe1 –xMoxO3 – δ solid solutions, Solid State Ionics, 2016, vol. 292, p. 116.
  18. Patrakeev, M.V., Leonidov, I.A., Kozhevnikov, V.L., and Kharton, V.V., Ion–electron transport in strontium ferrites: relationships with structural features and stability, Solid State Sci., 2004, vol. 6, p. 907.
  19. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, New Jersey: Wiley, 2005.
  20. Co, A.C., Xia, S.J., and Birss, V.I., A kinetic study of the oxygen reduction reaction at LaSrMnO3–YSZ composite Electrodes, J. Electrochem. Soc., 2005, vol. 152, p. 570.
  21. Rupasov, D.P., Berenov, A.V., Kilner, J.A., Istomin, S.Ya., and Antipov, E.V. Oxygen diffusion in Sr0.75Y0.25CoO2.62, Solid State Ionics, 2011, vol. 197, p. 18.
  22. Istomin, S.Ya. and Antipov, E.V., Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells, Russ. Chem. Rev., 2013. vol. 82, p. 686.
  23. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A, 1976, vol. 32, p. 751.
  24. Tietz, F., Thermal expansion of SOFC materials, Ionics, 1999, vol. 5, p. 129.
  25. Uhlenbruck, S. and Tietz, F., High-temperature thermal expansion and conductivity of cobaltites: potentials for adaptation of the thermal expansion to the demands for solid oxide fuel cells, Mater. Sci. Eng., B, 2004, vol. 107, p. 277.