Hydrogen–Air Fuel Cells with Open Cathode for High-Rate Electric Energy Systems

S. I. Nefedkin S. I. Nefedkin , A. V. Ivanenko A. V. Ivanenko , V. I. Pavlov V. I. Pavlov , S. V. Panov S. V. Panov , S. V. Shubenkov S. V. Shubenkov , M. A. Klimova M. A. Klimova , A. V. Ryabukhin A. V. Ryabukhin
Russian Journal of Electrochemistry
Abstract / Full Text

The results of R&D of electrochemical components of an energy system based on hydrogen–air open cathode fuel cells with proton-exchange membrane are presented. The scheme is shown being capable of realizing electrical power system with high specific energies (up to 700 W h/kg) on the condition that it contains no humidifiers and heaters, light metals are used as the material of bipolar plates, and the fuel cell operates in the mode of self-humidification of the membrane using only the reaction water therefor. Under these conditions, at operating temperatures up to 50°C, the air consumption is 50–100 times higher than the stoichiometric value; there appears a danger of the membrane drying-out. To improve the current–voltage characteristics, a combined method of manufacturing membrane–electrode assembles is used, according to which the catalytic layer was applied by screen printing, and the membrane is formed by direct application of an ionomer to the electrode. The properties of C–Pt- and TiN-based protective coatings on the surface of a titanium bipolar plate are also investigated. The dynamics of changes in the potentials of the electrodes is investigated at “critical” modes of the fuel cell operation and the process stabilization at the nominal mode. Using the experimental data for a fuel cell stack with a power of 1.2 kW and the specific enthalpy–temperature–air humidity diagram, the fuel-cell-operating temperature limits are calculated, at which the process of the membrane self-humidification with reaction water is maintained. The improving of electrochemical components of an open-cathode fuel cell stack is shown to allow achieving a specific power of the power modulus as high as 1 kW/kg.

Author information
  • BMPоwer Company, Skolkovo Innovation Center, Moscow, Russia

    S. I. Nefedkin, A. V. Ivanenko, V. I. Pavlov, S. V. Panov, S. V. Shubenkov, M. A. Klimova & A. V. Ryabukhin

  • National Research University MPEI, Moscow, Russia

    S. I. Nefedkin, M. A. Klimova & A. V. Ryabukhin

  1. Nefedkin, S., Shubenkov, S., Chaika, M., Panov, S., Pavlov, V., Zakharov, P., Klimova, M., and Ivanenko, A., Modular PEM FC power system for UAVs, Europ. Hydrogen Energy Conference. Costa del Sol, Spain, 2018, p. 297.
  2. Atkinson, R.W., Hazard, M.W., Rodgers, J.A., Stroman, R.O., and Gould, B.D., An Open-Cathode Fuel Cell for Atmospheric Flight, J. Electrochem. Soc., 2017, vol. 164(2), p. F 46.
  3. Sasmito, A.P., Kurnia, J.C., Shamim, T., and Mujumdar, A.S., Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method, Appl. Energy, 2017, vol. 185, p. 1225.
  4. Gadalla, M. and Zafar, S., Analysis of a hydrogen fuel cell-PV power system for small UAV, Int. J. Hydrogen Energy, 2016, vol. 41(15), p. 6422.
  5. Thomas, S., Kwon, O., Lee, S.C., Park, S., Choi, G., and Choi, J., Optimized flow distribution for enhancing temperature uniformity across an open cathode PEM fuel cell stack, Ecs. Transactions, 2013, vol. 58(1), p. 243.
  6. Chang,Y., Qin, Y., Yin, Y., Zhang, J., and Li, X., Humidification strategy for polymer electrolyte membrane fuel cells—A review, Appl. Energy, 2018, vol. 230, p. 643.
  7. Dai, W., Wang, H., Yuan, X.Z., Martin, J.J., Yang, D., Qiao, J., et al., A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2009, vol. 34(23), p. 9461.
  8. Breitwieser, M., Moroni, R., Schock, J., Schulz, M., Schillinger, B., Pfeiffer, F., Zengerle, R., and Thiele, S., Water management in novel direct membrane deposition fuel cells under low humidification, Int. J. Hydrogen Energy, 2016, vol. 41, p. 11412.
  9. Hagihara, H., Uchida, H., and Watanabe, M., Preparation of highly dispersed SiO2 and Pt particles in Nafion®112 for self-humidifying electrolyte membranes in fuel cells, Electrochim. Acta, 2006, vol. 51, p. 3979.
  10. Su, H., Xu, L., Zhu, H., Wu, Y.,Yang, L., Liao, S., Song, H., and Liang, Z., Birss Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst, Int. J. Hydrogen Energy, 2010, vol. 35, p. 7874.
  11. Wang, E.-D., Shi, P.-F., and Du, C.-Y., Novel self-humidifying MEA with water transfer region for PEM fuel cells, Fuel Cells Bull., 2008, p. 12.
  12. Yoshida, T. and Kojima, K., Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society, Electrochem. Soc. Interface. Summer, 2015, vol. 24, no. 2, p. 45.
  13. Thomas, A., Maranzana, G., Didierjean, S., Dillet, J., and Lottin, O., Measurements of Electrode Temperatures, Heat and Water Fluxes in PEMFCs: Conclusions about Transfer Mechanisms, J. Electrochem. Soc., 2013, vol. 160, p. F191.
  14. Nefedkin, S.I., Guterman, V.E., Alekseenko, A.A., Belenov, S.V., Ivanenko, A.V., Klimova, M.A., Pavlov,V.I., Panov, S.V., Paperzh, K.O., and Shubenkov, S.V., Domestic technologies and nanostructured materials in high-rate Electric Energy Systems based on hydrogen–air fuel cells with direct air feed (in Russian), Rossiiskie Nanotekhnologii, 2020, vol. 15, no. 3, p. 384.
  15. Klimova, M.A., Nefedkin, S.I., Kolomeitseva, E.A., Chizhov, A.V., Boldin, R.G., Simagin, S.B., and Fokin, A.N., Study of protective coatings at titanium bipolar plates of fuel cells with solid polymer electrolyte (in Russian), Al’ternativnaya Energetika Ekologiya, 2020, p. 101.
  16. Nefedkin, S., Panov, S., Shubenkov, S., Klimova, M., and Ivanenko, A., Complex method of a fuel cell membrane-electrode assembly fabrication with directly synthesized doped membrane, US provisional’ patent Application, no. 62988104, 2020.
  17. Klingele, M., Breitwieser, M., Zengerle, R., and Thiele, S., Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells, J. Mater. Chem., 2015, vol. 3, p. 11239.
  18. Breitwieser, M., Klingele, M., Britton, B., Holdcroft, S., Zengerle, R., and Thiele, S., Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition, Electrochem. Commun., 2015, vol. 60, p. 168.
  19. Barbir, F., PEM Fuel Cells: Theory and Practice, San Diego: Elsevier Sci., 2012.
  20. Taherian, R., A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection, J. Power Sources, 2014, vol. 265, p. 370.