Examples



mdbootstrap.com



 
Article
2022

Ionic Conductivity of LiTi2(PO4)3–LiClO4 Composites


A. S. UlikhinA. S. Ulikhin, D. V. NovozhilovD. V. Novozhilov, V. R. KhusnutdinovV. R. Khusnutdinov, Yu. E. Sinel’nikovaYu. E. Sinel’nikova, N. F. UvarovN. F. Uvarov
Russian Journal of Electrochemistry
https://doi.org/10.1134/S102319352207014X
Abstract / Full Text

Composite solid electrolytes (1 – х)LiTi2(PO4)3xLiClO4 are synthesized and their conducting properties are studied. Heterogeneous doping of LiTi2(PO4)3 with lithium perchlorate LiClO4 leads to a considerable increase of ionic conductivity and a decrease of activation energy as compared to the pure compound, which was not subjected to the pre-sintering. The conductivity of the composites reaches 6.8 × 10–6 S/cm at 100°C and 3.4 × 10–4 S/cm at 200°C with an activation energy of 0.62 eV.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Russian Academy of Sciences, Siberian Branch, Novosibirsk, RussiaA. S. Ulikhin, D. V. Novozhilov, V. R. Khusnutdinov, Yu. E. Sinel’nikova & N. F. Uvarov
  • Novosibirsk State University, Novosibirsk, RussiaD. V. Novozhilov & N. F. Uvarov
  • Novosibirsk State Technical University, Novosibirsk, RussiaYu. E. Sinel’nikova & N. F. Uvarov
References
  1. Balaish, M., Gonzalez-Rosillo, J.C., Kim, K.J., Zhu, Yu., Hood, Z.D., and Rupp, J.L.M., Processing thin but robust electrolytes for solid-state batteries, Nature Energy, 2021, vol. 6, p. 227.
  2. Arbi, K., Rojo, J.M., and Sanz, J., Lithium mobility in titanium based Nasicon Li1 + xTi2 – xAlx(PO4)3 and LiTi2 – xZrx(PO4)3 materials followed by NMR and impedance spectroscopy, J. Eur. Ceram. Soc., 2007, vol. 27, p. 4215.
  3. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N.A., and Adachi, G., Ionic conductivity of solid electrolytes based on lithium titanium phosphate, J. Electrochem. Soc., 1990, vol. 137, p. 1023.
  4. Arbi, K., Mandal, S., Rojo, J.M., and Sanz, J., Dependence of ionic conductivity on composition of fast ionic conductors Li1 + xTi2 – xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study, Chem. Mater., 2002, vol. 14, p. 1091.
  5. Wang, S., Ben, L., Li, H., and Chen, L., Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range, Solid State Ionics, 2014, vol. 268 p. 110.
  6. Arbi, K., Tabellout, M., and Sanz, J., NMR and electric impedance study of lithium mobility in fast ion conductors LiTi2 – xZrx(PO4)3 (0 ≤ x ≤ 2), Solid State Ionics, 2010, vol. 180, p. 1613.
  7. Kahlaoui, R., Arbi, K., Sobrados, I., Jimenez, R., Sanz, J., and Ternane, R., Cation miscibility and lithium mobility in NASICON Li1 + xTi2 – xScx(PO4)3 (0 ≤ x ≤ 0.5) series A: Combined NMR and impedance study, Inorg. Chem., 2017, vol. 56, p. 1216.
  8. Šalkus, T., Barre, M., Kežionis, A., Kazakevičius, E., Bohnke, O., Selskienė, A., and Orliukas, A.F., Ionic conductivity of Li1.3Al0.3 – xScxTi1.7(PO4)3 (x = 0, 0.1, 0.15, 0.2, 0.3) solid electrolytes prepared by Pechini process, Solid State Ionics, 2012, vol. 225, p. 615.
  9. Kwatek, K. and Nowiński, J.L., Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid, Solid State Ionics, 2017, vol. 302, p. 54.
  10. Fu, J., Fast Li+ ion conduction in Li2O–(Al2O3Ga22O3)–TiO2–P2O5 glass-ceramics, J. Mater. Sci., 1998, vol. 33, p. 1549.
  11. Fu, J., Superionic conductivity of glass-ceramics in the system Li2O–Al2O3–TiO2–P2O5, Solid State Ionics, 1997, vol. 96, p. 195.
  12. Kwatek, K. and Nowiński, J.L., Studies on electrical properties of composites based on lithium titanium phosphate with lithium iodide, Solid State Ionics, 2017, vol. 302, p. 35.
  13. Kobayashi, Y., Tabuchi, M., and Nakamura, O., Ionic conductivity enhancement in LiTi2(PO4)3-based composite electrolyte by the addition of lithium nitrate, J. Power Sources, 1997, vol. 68, p. 407.
  14. Aono, H., Sugimoto, E., Sadaoka, Y.N., Adachi G., and Imanaka, N., Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3), Solid State Ionics, 1991, vol. 47, p. 257.
  15. Ulihin, A.S., Uvarov, N.F., Mateyshina, Yu.G., Brezhneva, L.I., and Matvienko, A.A., Composite solid electrolytes LiClO4–Al2O3, Solid State Ionics, 2006, vol. 177, p. 2787.
  16. Ulihin, A.S. and Uvarov, N.F., Electrochemical properties of composition solid electrolytes LiClO4–MgO, Russ. J. Electrochem., 2009, vol. 45, p. 707.
  17. Abrha, L.H., Zegeye, T.A., Hagos, T.T., Sutiono, H., Hagos, T.M., Berhe, G.B., Huang, C.-J., Jiang, S.‑K., Su, W.-N., Yang, Y.-W., and Hwang, B.-J., Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochim. Acta, 2019, vol. 325, p. 134825.
  18. Uvarov, N.F., Estimation of electrical properties of composite solid electrolytes of different morphologies, Solid State Ionics, 2017, vol. 302, p. 19.
  19. Uvarov, N.F. and Boldyrev, V.V., Size effects in chemistry of heterogeneous systems, Russ. Chem. Rev., 2001, vol. 70, p. 265.