Article
2022

Possible Causes of Lithium–Sulfur Battery Degradation


T. L. Kulova T. L. Kulova , S. A. Li S. A. Li , E. V. Ryzhikova E. V. Ryzhikova , A. M. Skundin A. M. Skundin
Russian Journal of Electrochemistry
https://doi.org/10.1134/S102319352205007X
Abstract / Full Text

Abstract—

To assess the possible degradation mechanisms of lithium–sulfur batteries during their cycling, cyclic voltammograms of sulfur electrode in normalized coordinates were analyzed. A capacity decrease at the low-voltage plateau is shown to correspond to the decrease in the active material amount, whereas decrease at the high-voltage plateau is characterized by a decrease in the reduction depth. The sulfur solubility in the dioxolane–dimethoxyethane mixture (1 : 1) is measured; it is about 0.2 M at room temperature. It is concluded that the shuttle transfer of polysulfides is not the only cause of the degradation: the transfer of dissolved sulfur also makes a significant contribution.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    T. L. Kulova & A. M. Skundin

  • National Research University (MPEI), 111250, Moscow, Russia

    S. A. Li & E. V. Ryzhikova

References
  1. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C., and Su, Y.-S., Rechargeable Lithium–Sulfur Batteries, Chem. Rev., 2014, vol. 114, p. 11751.
  2. Kang, W., Deng, N., Ju, J., Li, Q., Wu, D., Ma, X., Li, L., Naebe, M., and Cheng, B., A review of recent developments in rechargeable lithium–sulfur batteries, Nanoscale, 2016, vol. 8, p.16541.
  3. Kolosnitsyn, V.S. and Karaseva, E.V., Lithium–sulfur batteries: problems and solutions, Russ. J. Electrochem., 2008, vol. 44, p. 506.
  4. Ryu, H.S., Ahn, H.J., Kim, K.W., Ahn, J.H., Cho, K.K., and Nam, T.H., Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte, Electrochim. Acta, 2006, vol. 52, p. 1563.
  5. Mikhaylik, Y., Electrolytes for lithium sulfur cells. US Pat. 7354680 (2008).
  6. Zhao, M.-Q., Peng, H.-J., Tian, G.-L., Zhang, Q., Huang, J.-Q., Cheng, X.-B., Tang, C., and Wei, F., Hierarchical Vine-Tree-Like Carbon Nanotube Architectures: In-Situ CVD Self-Assembly and Their Use as Robust Scaffolds for Lithium–Sulfur Batteries, Adv. Mater., 2014, vol. 26, p. 7051.
  7. Wang, J., Wu, Y., Shi, Z., and Wu, C., Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for Lithium–Sulfur Batteries, Electrochim. Acta, 2014, vol. 144, p. 307.
  8. Kuz’mina, E.V., Karaseva, E.V., Chudova, N.V., Mel’nikova, A.A., and Kolosnitsyn, V.S., On the Possibility of Determination of Thermodynamic Functions of the Li–S Electrochemical System Using the EMF Method, Russ. J. Electrochem., 2019, vol. 55, p. 978.
  9. Song, M.-K., Cairns, E.J., and Zhang, Y., Lithium/sulfur batteries with high specific energy: old challenges and new opportunities, Nanoscale, 2013, vol. 5, p. 2186.
  10. Ji, X. and Nazar, L.F., Advances in Li–S batteries, J. Mater. Chem., 2010, vol. 20, p. 9821.