Research of Nanostructured Carbon Felt Materials as Electrodes of Vanadium Flow Batteries

V. A. Komarov V. A. Komarov , A. N. Voropay A. N. Voropay , M. N. Il’ina M. N. Il’ina , T. V. Goryacheva T. V. Goryacheva
Russian Journal of Electrochemistry
Abstract / Full Text

Flowing vanadium batteries are gaining great popularity in the world and are already ahead of lead-acid batteries in terms of installed capacity, but are far behind lithium-ion batteries. The wide distribution of these systems is also constrained by the low power density, due to the fact that the electrocatalytic activity of electrode materials towards to vanadium ions is low, therefore, the polarization resistance at high current densities is significant. Therefore, in this research the modification method of felt electrodes to reduce the resistivity of a flow battery cell. The modification is carried out by thermal catalytic decomposition of propane/butane on the surface of a carbon fiber. The application of filamentous nanostructures has been shown to reduce the resistance of a flow-through rechargeable battery from 11 to 3.9 Ω cm2.

Author information
  • Dubna State University, 141982, Dubna, Russia

    V. A. Komarov, A. N. Voropay, M. N. Il’ina & T. V. Goryacheva

  • CJSC Technocomplekt, 141981, Dubna, Russia

    A. N. Voropay

  1. Nguyen, T. and Savinell, R.F., Flow batteries, Electrochem. Soc. Interface, 2010, vol. 19, p. 54.
  2. Lüth, T., König, S., Suriyah, M., and Leibfried, T., Passive components limit the cost reduction of conventionally designed vanadium redox flow batteries, Energy Procedia, 2018, vol. 155, p. 379.
  3. Wu, X., Xu, H., Lu, H., Zhao, H., Fu, H., Shen, H., Xu, H., and Dong, H., PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery, J. Power Sources, 2014, vol. 250, p. 274.
  4. Bevilacqua, N., Eifert, L., Banerjee, R., Köble, K., Faragó, T., Zuber, M., Bazylak, A., and Zeis, R., Visualization of electrolyte flow in vanadium redox flow batteries using synchrotron X-ray radiography and tomography—impact of electrolyte species and electrode compression, J. Power Sources, 2019, vol. 439, p. 227071.
  5. Eifert, L., Banerjee, R., Jusys, Z., and Zeis, R., Characterization of carbon felt electrodes for vanadium redox flow batteries: impact of treatment methods, J. Electrochem. Soc., 2018, vol. 165, p. A2577.
  6. Kim, K.J., Park, M.-S., Kim, Y.-J., Kim, J.H., Dou, S.X., and Skyllas-Kazacos, M., A technology review of electrodes and reaction mechanisms in vanadium redox flowbatteries, J. Mater. Chem. A, 2015, vol. 3, p. 16913.
  7. Yue, L., Li, W.S., Sun, F.Q., Zhao, L.Z., and Xing, L.D., Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 2010, vol. 48, p. 3079.
  8. Sun, B. and Skyllas-Kazacos, M., Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments, Electrochim. Acta, 1992, vol. 37, p. 2459.
  9. Wu, Y. and Holze, R., Electrocatalysis at electrodes for vanadium redox flow batteries, Batteries, 2018, vol. 4, p. 47.
  10. Wang, W.H. and Wang, X.D., Investigation of Ir-modifed carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochim. Acta, 2007, vol. 52, p. 6755.
  11. Yao, C., Zhang, H., Liu, T., Li, X., and Liu, Z., Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, J. Power Sources, 2012, vol. 218, p. 455.
  12. Kim, K.J., Park, M.S., Kim, J.H., Hwang, U., Lee, N.J., Jeong, G., and Kim, Y.J., Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries, Chem. Commun., 2012, vol. 48, p. 5455.
  13. Sun, B. and Skyllas-Kazacos, M., Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment, Electrochim. Acta, 1992, vol. 37, p. 1253.
  14. Han, P., Wang, H., Liu, Z., Chen, X., Ma, W., Yao, J., Zhu, Y., and Cui, G., Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/ and V2+/V3+ redox couples for a vanadium redox flow battery, Carbon, 2011, vol. 49, p. 693.
  15. Vazquez-Galv, J., Flox, C., Jervis, J.R., Jorge, A.B., Shearing, P.R., and Morante, J.R., High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries, Carbon, 2019, vol. 148, p. 91.
  16. Huang, R.-H., Sun, C.-H., and Tseng, T.-M., Chao, W.-K., Hsueh, K.-L., and Shieu, F.-S., Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery, J. Electrochem. Soc., 2012, vol. 159, p. A1579.
  17. Jin, J., Fu, X., Liu, Q., Liu, Y., Wei, Z., Niu, K., and Zhang, J., Identifying the active site in nitrogen-doped graphene for the VO2+/VO2+ redox reaction, ACS Nano, 2013, vol. 7, no. 6, p. 4764.
  18. Wang, S., Zhao, X., Cochell, T., and Manthiram, A., Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries, J. Phys. Chem., 2012, vol. 3, p. 2164.
  19. Golovin, Yu.I., Golovin, D.Yu., Shuklinov, A.V., Stolyarov, R.A., and Vasyukov, V.M., Electrodeposition of nickel nanoparticles onto multiwalled carbon nanotubes, Tech. Phys. Lett., 2011, vol. 37, no. 3, p. 253.
  20. Temirgaliyeva, T.S., Nazhipkyzy, M., Nurgain, A., Mansurov, Z.A., and Bakenov, Z.B., Synthesis of carbon nanotubes on a shungite substrate and their use for lithium-sulfur batteries, J. Eng. Phys. Thermophys., 2018, vol. 91, p. 1295.
  21. Opar, D.O., Nankya, R., Lee, J., and Jung, H., Three-dimensional mesoporous graphene-modified carbon felt for high-performance vanadium redox flow batteries, Electrochim. Acta, 2019, vol. 330, p. 135276.
  22. Davies, T. and Tummino, J., High-performance vanadium redox flow batteries with graphite felt electrodes, J. Carbon Res., 2018, vol. 4, p. 8.
  23. Chen, J.-Z., Liao, W.-Y., Hsieh, W.-Y., Hsu, C.-C., and Chen, Y.-S., All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets, J. Power Sources, 2015, vol. 274, p. 894.
  24. Shao, Y., Wang, X., Engelhard, M., Wang, C., Dai, S., Liu, J., Yang, Z., and Lin, Y., Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources, 2010, vol. 195, p. 4375.
  25. Sun, J., Zeng, L., Jiang, H.R., Chao, C.Y.H., and Zhao, T.S., Formation of electrodes by self-assembling porous carbon fibers into bundles for vanadium redox flow batteries, J. Power Sources, 2018, vol. 405, p. 106.
  26. Oh, K., Moazzam, M., Gwak, G., and Ju, H., Water crossover phenomena in all-vanadium redox flow batteries, Electrochim. Acta, 2008, vol. 297, pp. 101–111.
  27. Wei, X., Nie, Z., Luo, Q., Li, B., Chen, B., Simmons, K., Sprenkle, V., and Wang, W., Nanoporous polytetrafluoroethylene/silica composite separator as a highperformance all-vanadium redox flow battery membrane, Adv. Energy Mater., 2013, vol. 3, p. 1215.
  28. Wang, Q., Qu, Z.G., Jiang, Z.Y., and Yang, W.W., Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode, Appl. Energy, 2018, vol. 213, p. 293.
  29. Chen, J.-Y., Hsieh, C.-L., Hsu, N.-Y., Chou, Y.-S., and Chen, Y.-S., Determining the limiting current density of vanadium redox flow batteries, Energies, 2014, vol. 7, p. 5863.
  30. Satola, B., Komsiyska, L., and Wittstock, G., Bulk aging of graphite-polypropylene current collectors induced by electrochemical cycling in the positive electrolyte of vanadium redox flow batteries, J. Electrochem. Soc., 2017, vol. 164, p. A2566.