Thermodynamic Study of the Ag–Sb–Se System by the EMF Method with Ag4RbI5 Solid Electrolyte

L. F. Mashadieva L. F. Mashadieva , D. M. Babanly D. M. Babanly , Yu. A. Yusibov Yu. A. Yusibov , D. B. Tagiev D. B. Tagiev , M. B. Babanly M. B. Babanly
Russian Journal of Electrochemistry
Abstract / Full Text

The results of studying the Ag–Sb–Se system by measuring the electromotive force (EMF) of concentration cells with the Ag4RbI5 solid electrolyte with respect to silver electrode in the temperature region of 300–450 К are shown. The solid solutions based on the AgSbSe2 form along the section Ag2Se–Sb2Se3 and their homogeneity region is determined. Based on equations of EMF vs. temperature dependences, the partial molar functions of silver in certain phase domains of this system are calculated. The standard thermodynamic functions of formation and the standard entropies are determined for the solid phases Ag0.8Sb1.2Se2.2, Ag0.9Sb1.1Se2.1, and AgSbSe2 and also for the low-temperature modification Ag2Se. The values found for AgSbSe2 and Ag2Se are compared with the literature data.

Author information
  • Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, AZ-1148, Baku, Azerbaijan

    L. F. Mashadieva, D. M. Babanly, D. B. Tagiev & M. B. Babanly

  • Azerbaijan State University of Oil and Industry, AZ-1010, Baku, Azerbaijan

    D. M. Babanly

  • Ganja State University, AZ-2000, Ganja, Azerbaijan

    Yu. A. Yusibov

  • Baku State University, AZ-1143, Baku, Azerbaijan

    M. B. Babanly

  1. Kolobov, A.V. and Tominaga, J., Chalcogenides, Springer, 2012.
  2. Applications of Chalcogenides: S, Se, and Te, Ahluwalia, G.K., Ed., Springer, 2016.
  3. Gao, M.R., Xu, Y.F., Jiang, J., and Yu, S.H., Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices, Chem. Soc. Rev., 2013, vol. 42(7), p. 2986.
  4. Babanly, M.B., Yusibov Yu.A., and Abishev, V.T., Trekhkomponentnye khal’kogenidy na osnove medi i serebra (Ternary Chalcogenides Bases on Copper and Silver), Baku: BGU, 1993.
  5. Shevel’kov, A.V., Chemical aspects of the design of thermoelectric materials, Russ. Chem. Rev., 2008, vol. 77(1), p. 1.]
  6. Semkiv, I., Ilchuk, H., Pawlowski, M., and Kusnezh, V., Ag8SnSe6 argyrodite synthesis and optical properties, Opto-Electron. Rev., 2017, vol. 25, p. 37.
  7. Guin, S.N., Srihari, V., and Biswas, K., Promising thermoelectric performance in n-type AgBiSe2: Effect of aliovalent anion dopin, J. Mater. Chem. A, 2015, vol. 3, p. 648.
  8. Dahshan, A., Hegazy, H.H., Aly, K.A., and Sharma, P., Semiconducting Ge–Se–Sb–Ag chalcogenides as prospective materials for thermoelectric applications. Phys. B (Amsterdam, Neth.), 2017, vol. 526, p. 117.
  9. Horichok, I., Ahiska, R., Freik, D., Nykyruy, L., Mudry, S., Matkivskiy, O., and Semko, T., Phase content and thermoelectric properties of optimized thermoelectric structures based on the Ag–Pb–Sb–Te system, J. Electron. Mater., 2016, vol. 45(3), p. 1576.
  10. Kusz, B., Miruszewski, T., Bochentyn, B., Łapiński, M., and Karczewski, J., Structure and thermoelectric properties of Te–Ag–Ge–Sb (TAGS) materials obtained by reduction of melted oxide substrates, J. Electron. Mater., 2016, vol. 45(2), p. 1085.
  11. Namitha-Asokan, T., Urmila, K.S., and Pradeep, B., Electrical and photoconductivity studies on AgSbSe2 thin films, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 73, p. 012013.
  12. Ivanov-Schitz, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), vol. 1, St. Petersburg: St. Petersburg Univ., 2000 (in Russian).
  13. Li, L., Liu, Y., Dai, J., Hong, A., Zeng, M., Yan, Z., Xu, J., Zhang, D., Shan, D., Liu, Sh., Ren, Z., and Liu, J.-M., High thermoelectric performance of superionic argyrodite compound Ag8SnSe6, J. Mater. Chem. C., 2016, vol. 4, p. 5806.
  14. Berezin, V.M. and Vyatkin, G.P., Superionnye poluprovodnikovye khal’kogenidy (Superionic Semiconducting Chalcogenides), Chelyabinsk; South Ural State Univ., 2001 (in Russian).
  15. Qiu, P., Agne, M.T., Liu, Y., Zhu, Y., Chen, H., Mao, T., Yang, J., Zhang, W., Haile, S.M., Zeier, W.G., Janek, J., Uher, C., Shi, X., Chen, L., and Snyder, G.J., Suppression of atom motion and metal deposition in mixed ionic electronic conductors, Nat. Commun., 2018, 9: 2910.
  16. Gao, W., Wang, Z., Huang, J., and Liu, Z., Extraordinary thermoelectric performance realized in hierarchically structured AgSbSe2 with ultralow thermal conductivity, ACS Appl. Mater. Interfaces, 2018, vol. 10(22), p. 18685.
  17. Guin, S.N., Chatterjee, A., and Biswas, K., Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping, RSC Adv., 2014, vol. 4(23), p. 11811.
  18. Lee, J.K., Oh, M.-W., Ryu, B., B., Lee, J.E., Kim, B.-S., Min, B.-K., Joo, S.-J., Lee H.-W., and Park, S.-D., Enhanced thermoelectric properties of AgSbTe2 obtained by controlling heterophases with Ce doping, Nature Sci. Rep., 2017, vol. 7, Article number: 4496.
  19. Yan, M., Tan, X., Huang, Z., Liu, G., Jiang, P., and Bao, X., Synergetic optimization of electronic and thermal transport for high performance thermoelectric GeSe–AgSbTe2 alloy, J. Mater. Chem. A, 2018, vol. 6(18), p. 8215.
  20. Zlomanov, V.P., Khoviv, A.M., and Zavrazhnov, A.Yu., Physicochemical analysis and synthesis of nonstoichiometric solids, Mater. Sci. Adv. Top., 2013, p. 103.
  21. Babanly, M.B., Chulkov, E.V., Aliev, Z.S., Shevelkov, A.V., and Amiraslanov, I.R., Phase diagrams in the materials science of topological insulators based on metal chalcogenides, Russ. J. Inorg. Chem., 2017, vol. 62(13), p. 1703.
  22. Babanly, M.B, Mashadiyeva, L.F., Babanly, D.M., Imamaliyeva, S.Z., Tagiyev, D.B., and Yusibov, Yu.A., Some aspects of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenide systems by the EMF method, Russ. J. Inorg. Chem., 2019, vol. 64(13), p. 1649.
  23. Babanly, M.B., Yusibov, Y.A., and Babanly, N.B., The EMF Method with Solid-state Electrolyte in the Thermodynamic Investigation of Ternary Copper and Silver Chalcogenides./ Electromotive Force and Measurement in Several Systems, Kara, S., Ed., Intechweb, 2011, p. 57.
  24. Moroz, M.V. and Prokhorenko, M.V., Measurement of the thermodynamic properties of saturated solid solutions of compounds in the Ag–Sn–Se system by the EMF method, Russ. J. Phys. Chem. A., 2015, vol. 89, p.1325.
  25. Moroz, M.V., Prokhorenko, M.V., and Rudyk, B.P., Thermodynamic properties of phases of the Ag–Ge–Te System, Russ. J. Electrochem., 2014, vol. 50, p. 1177.
  26. Moroz, M.V. and Prokhorenko, M.V., Determination of thermodynamic properties of saturated solid solutions of the Ag–Ge–Se system using EMF technique, Russ. J. Electrochem., 2015, vol. 51, p. 697.
  27. Tesfaye, F. and Taskinen, P., Experimental thermodynamic study of the equilibrium phase AgBi3S5 by an improved EMF method, Thermochim. Acta, 2013, vol. 562, p. 75.
  28. Aspiala, M., Tesfaye, F., and Taskinen, P., Thermodynamic study in the Ag–Sb–S system by the EMF method, J. Chem. Thermodyn., 2016, vol. 98, p. 361.
  29. Babanly, N.B., Orujlu, E.N., Imamaliyeva, S.Z., Yusibov, Y.A., and Babanly, M.B., Thermodynamic investigation of silver-thallium tellurides by EMF method with solid electrolyte Ag4RbI5, J. Chem. Thermodyn., 2019, vol. 128, p. 78.
  30. Babanly, N.B., Imamaliyeva, S.Z., Yusibov, Y.A., Taghiyev, D.B., and Babanly, M.B., Thermodynamic study of the Ag–Tl–Se system using the EMF method with Ag4RbI5 as a solid electrolyte, J. Solid State Electrochem., 2018, vol. 22, p. 1143.
  31. Alverdiyev, I.J., Imamaliyeva, S.Z., Babanly, D.M., Yusibov, Yu.A., Tagiyev, D.B., and Babanly, M.B., Thermodynamic study of silver–tin selenides by the EMF method with Ag4RbI5 solid electrolyte, Russ. J. Electrochem., 2019, vol. 55, p. 467.
  32. Mashadieva, L. F., Mansimova, Sh. G., Yusibov, Yu.A., and Babanly, M.B., Thermodynamic study of the 2PbTe–AgSbTe2 system using EMF technique with the Ag4RbI5 solid electrolyte, Russ. J. Electrochem., 2018, vol. 54, p.106.
  33. Babanly, M.B., Mashadieva, L.F., Aliev, Z.S., Shevelkov, A.V., and Yusibov, Y.A., Phase diagram and thermodynamic properties of compounds of the AgI–TlI–I system, J. Alloys Compd., 2012, vol. 524, p. 38.
  34. Mashadieva, L.F., Aliev, Z.S., Shevelkov, A.V., and Babanly, M.B., Experimental investigation of the Ag–Bi–I ternary system and thermodynamic properties of the ternary phases, J. Alloys Compd., 2013, vol. 551, p. 512.
  35. Alverdiev, I.Dzh., Bagkheri, S.M., Imamalieva, S.Z., Yusibov, Yu.A., and Babanly, M.B., Thermodynamic study of Ag8GeSe6 by EMF with an Ag4RbI5 solid electrolyte, Russ. J. Electrochem., 2017, vol. 53, p. 551.]
  36. Mashadiyeva, L.F., Kevser, J.O., Aliev, I.I., Yusibov, Y.A., Taghiyev, D.B., Aliev, Z.S., and Babanlı, M.B., The Ag2Te–SnTe–Bi2Te3 system and thermodynamic properties of the (2SnTe)1 – x(AgBiTe2)x solid solutions series, J. Alloys. Compd., 2017, vol. 724, p. 641.
  37. Mashadiyeva, L.F., Kevser, J.O., Aliev, I.I., Yusibov, Y.A., Taghiyev, D.B., Aliev, Z.S., and Babanlı, M.B., Phase equilibria in the Ag2Te–SnTe–Sb2Te3 system and thermodynamic properties of the (2SnTe)1 – x(AgSbTe2)x solid solution, J. Phase Equilib. Diffus., 2017, vol. 38, p. 603.
  38. Babanly, M.B., Mashadiyeva, L.F., Veliyeva, G.M., Imamalieva, S.Z., and Shykhyev, Y.M., Thermodynamic study of the Ag–As–Se and Ag–S–I systems using the EMF method with a solid Ag4RbI5 electrolyte, Russ. J. Electrochem., 2009, vol. 45, p. 399.
  39. Geller, S. and Wernick J.H., Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2, Acta Crystallogr., 1959, vol. 12, p. 46.
  40. Pearson’s Handbook of Crystallographic Data of Intermetallic Phases, Villars, P., Ed., ASM International, 1997, vols. 1–2.
  41. Tarasevich, S.A., Kovaleva, I.S., Medvedev, Z.S., and Antonova, L.I., Interaction study in the Ag–Sb–Se system, Russ. J. Inorg. Chem., 1971, vol. 16, p. 3341.
  42. Boutserrit, A., Ollitrault-Fichet, R., Rivet, J., and Dugué, J., Description du systéme ternarie Ag–Sb–Se, J. Alloys Compd., 1993, vol. 191, p. 223.
  43. Moroz, M.V. and Prokhorenko, M.V., Thermodynamic properties of the intermediate phases of the Ag–Sb–Se system, Russ. J. Phys. Chem. A, 2014, vol. 88(5), p. 742.
  44. Database of Thermal Constants of Substances, Electronic version, Iorish, V.S. and Jungman, V.S., Eds., 2006.].
  45. Gerasimov, Y.I., Krestovnikov, A.N., and Gorbov, S.I., Khimicheskaya termodinamika v tsvetnoi metallurgii. Spravochnik, tom 6 (Chemical Thermodynamics in Non-ferrous Metallurgy. Reference Book. Vol. 6), Moscow: Metallurgy, 1974 (in Russian).
  46. Abbasov, A.S., Termodinamicheskie svoistva nekotorykh poluprovodnikovykh veshchestv (Thermodynamic Properties of Certain Semiconductor Substances), Baku: Elm, 1981 (in Russian).
  47. Feng, D., Taskinen, P., and Tesfaye, F., Thermodynamic stability of Ag2Se from 350 to 500 K by a solid state galvanic cell, Solid State Ionics, 2013, vol. 231, p. 1.
  48. Morachevsky, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B. Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh sistem (Electrochemical Research Methods in Thermodynamics of Metal Systems, Moscow: Akademkniga, 2003 (in Russian).
  49. Babanly, M.B. and Yusibov, Yu.A., Elektrokhimicheskie metody v termodinamike neorganicheskikh sistem (Electrochemical Methods in Thermodynamics of Inorganic Systems, Baku: Elm, 2011 (in Russian).
  50. Kubaschewski, O., Alcock, C.B., and Spenser, P.J., Materials Thermochemistry, Pergamon, 1993.
  51. Melekh, B.T., Stepanova, N.B., and Fomina, T.A., Thermodynamic properties of compounds in the Sn–Se system, Zh. Fiz. Khim., 1971, vol. 45, p. 2018.