Examples



mdbootstrap.com



 
Article
2016

Computer aided simulation of hydrogen–oxygen (air) fuel cell with regard to the degradation mechanism of platinum catalyst on the cathode


E. M. Kol’tsovaE. M. Kol’tsova, V. A. BogdanovskayaV. A. Bogdanovskaya, M. R. TarasevichM. R. Tarasevich, V. A. VasilenkoV. A. Vasilenko, M. M. StankevichM. M. Stankevich, E. B. FilippovaE. B. Filippova, A. A. KhoroshavinaA. A. Khoroshavina
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193516010043
Abstract / Full Text

A mathematical model of a hydrogen–oxygen (air) fuel cell that takes into account the phenomena of degradation of the cathodic platinum catalyst is presented. For potential cycling from 0.6 to 1.1 V with a scan rate of 0.1 V/s, depending on the platinum loadings, the following factors are found to prevail in the mechanism of electroactive surface degradation: the coalescence of platinum nanoparticles at large loadings and the platinum dissolution/redeposition and diffusion to the membrane at medium and low loadings. Based on mathematical simulation, the data on the discharge curves are calculated. The observed decrease in the discharge characteristics is attributed to the degradation of the catalyst active surface and the increased transport losses during accelerated stress testing.

Author information
  • Mendeleev University of Chemical Technology, Miusskaya pl. 9, Moscow, 125047, RussiaE. M. Kol’tsova, V. A. Vasilenko, M. M. Stankevich, E. B. Filippova & A. A. Khoroshavina
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, RussiaV. A. Bogdanovskaya & M. R. Tarasevich
References
  1. Thompsett, D., in Handbook of Fuel Cells. Fundamentals, Technology and Applications, Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., New York: Wiley, 2003, vol. 3, Chapter 6.
  2. Zhang, J., Zhang, H., Wu, J., and Zhang, J., PEM Fuel Cell Testing and Diagnosis, Elsevier, 2013, Chapter 11.
  3. Wu Bi, and Fuller, T.F., J. Power Sources, 2008, vol. 178, p. 188.
  4. Ahluwalia, R.K., Arisetty, S., Peng, J., Subbaraman, R., Wang, X., Kariuki, N., Myers, D.J., Mukundan, R., Borup, R., and Polevaya, O., J. Electrochem. Soc., 2014, vol. 161, p. F291.
  5. Sninji, J., Nonoyama, N., and Yoshida, T., J. Power Sources, 2012, vol. 215, p. 18.
  6. Tarasevich, M.R. and Bogdanovskaya, V.A., Al’tern. Energ. Ekol., 2009, no. 12, p. 24.
  7. Shao-Horn, Y., Sheng, W.C., Chen, S., Ferreeira, P.J. et al., Top. Catal., 2007, vol. 46, p. 285.
  8. Ferreeira, P.J., la O’, G.J., Shao-Horn, Y., Morgan, D., et al., J. Electrochem. Soc., 2005, vol. 152, p. B446.
  9. Kawahara, S., Mitsushima, S., Ota, K., and Kamiya, N., ECS Trans., 2006, vol. 3, p. 625.
  10. Yasuda, K., Taniguchi, A., Akita, T., Ioroi, T., and Siroma, Z., J. Electrochem. Soc., 2006, vol. 153, p. A1599.
  11. Groom, D.J., Rajaasekhara, S., Matyas, S., Yang, Z., et al., ECS Trans., 2011, vol. 41, p. 933.
  12. Avakov, V.B., Bogdanovskaya, V.A., Vasilenko, V.A., Ivanitskii, B.A., Kol’tsova, E.M., Kuzov, A.V., Kapustin, A.V., Landgraf, I.K., Stankevich, M.M., and Tarasevich, M.R., Russ. J. Electrochem., 2015, vol. 51, p. 719.
  13. Vasilenko, V.A., Stankevich, M.M., Khoroshavina, A.A., Shcherbakov, A.I., Kol’tsova, E.M., and Tarasevich, M.R., Usp. Khim. Khim. Tekhnol., 2014, vol. 28, p. 100.
  14. Johnson Matthey Fuel Cells. http://wwwjmfuelcellscom/products/fuel_cell_catalysts. Assessed March 05, 2015.
  15. Frolov, Yu.G., Kurs kolloidnoi khimii. Poverkhnostnye yavleniya i dispersnye sistemy (Course of Colloid Chemistry. Surface Phenomena and Disperse Systems), Moscow: Al’yans, 2004.
  16. Kafarov, V.V., Dorokhov, I.N., and Kol’tsova, E.M., Sistemnyi analiz protsessov khimicheskoi tekhnologii. Entropiinyi i variatsionnyi metody neravnovesnoi termodinamiki v zadachakh khimicheskoi tekhnologii (Systems Analysis of Chemical Technology Processes. Entropy and Variation Methods of Nonequilibrium Thermodynamics in Problems of Chemical Technology), Moscow: Nauka, 1988.
  17. Vasilenko, V.A., Tyutin, A.O., Stankevich, M.M., Kol’tsova, E.M., Kuzov, A.V., and Bogdanovskaya, V.A., Al’tern. Energ. Ekol., 2013, no. 3, p. 18.
  18. Iranzo, A., Muñoz, M., and Rosa, F., and Pino, J., Int. J. Hydrogen Energy, 2010, vol. 35, p. 11533.
  19. Simulation Driven Product Development, ANSYS. http://ansyscom/. Assessed March 05, 2015.
  20. ANSYS. http://wwwcae-expertru. Assessed March 05, 2015.
  21. Tarasevich, M.R. and Korchagin, O.V., Russ. J. Electrochem., 2014, vol. 50, p. 737.
  22. Arisetty, S., Wang, X., Ahluwalia, R.K., Mukundan, R., Borup, R., Davey, J., Langlois, D., Gambini, F., Polevaya, O., and Blanchet, S., J. Electrochem. Soc., 2012, vol. 159, p. B455.