Examples



mdbootstrap.com



 
Article
2017

The Effect of Adsorption of Ions of the Hexacyanoferrate(II)/(III) Redox Pair on Self-Assembly of Octanethiol at Its Adsorption from Aqueous Solutions on Gold Electrode


S. N. OvchinnikovaS. N. Ovchinnikova
Russian Journal of Electrochemistry
https://doi.org/10.1134/S1023193517110106
Abstract / Full Text

The effect of components of the redox pair K3[Fe(CN)6]/K4[Fe(CN)6] on the dynamics of formation of octanethiol (OT) monolayers from aqueous thiol-containing solutions of 0.1 М NaClO4 is studied by cyclic voltammetry (CVA). The formation of OT monolayers is shown to depend on the presence of ions of hexacyanoferrate(II)/(III) in solution. Being added to solution, the components of the [Fe(CN)6]3–/4– redox pair sharply increase the time of formation of the insulating monolayer OT films and make them less stable. The destabilizing and inhibiting action of [Fe(CN)6]3–/4– ions becomes stronger as their concentration in solution increases. The adsorption activity of individual components of the redox pair is assessed. The strong and approximately equal adsorption activity of ions [Fe(CN)6]3– and [Fe(CN)6]4– on gold in the presence of octanethiol is observed. At the same time, OT and the hexacyanoferrate(II)/(III) ions can be placed in the following row: OT > [Fe(CN)6]3– ≈ [Fe(CN)6]4–. Recommendations are given on how to eliminate the interfering action of the K3[Fe(CN)6]/K4[Fe(CN)6] redox-pair ions when studying the insulating properties of thiol monolayers on gold.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630128, RussiaS. N. Ovchinnikova
References
  1. Chaki, N.R. and Vijayamohanan, K., Self-assembled monolayers as a tunable platform for biosensor applications, Biosens. Bioelectron., 2002, vol. 17, p. 1.
  2. Beulen, M.W.J., Kastenberg, M.I., van Veggel, F., and Reinboudt, D.N., Electrochemical stability of selfassembled monolayers on gold, Langmuir, 1998, vol. 14, p. 7463.
  3. Johnson, B.N and Mutharasan, R. Regeneration of gold surfaces covered by adsorbed thiols and proteins using liquid-phase hydrogen peroxide-mediated UVphotooxidation, J. Phys. Chem., 2013, vol. 117, p. 1335.
  4. Carvalhal, R.F., Freire, R.S., and Kubota, L.T., Polycrystalline gold electrode: a comparative study of pretreatment procedures used for cleaning and thiol selfassembly monolayer formation, Electroanalysis, 2005, vol. 17, p. 1251.
  5. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 2005, vol. 105, p. 1103.
  6. Iost, R.M. and Crespilho, F.N., Layer-by-layer selfassembly and electrochemistry: applications in biosensing and bioelectronics, Biosens. Bioelectron., 2012, vol. 31, p. 1.
  7. Gooding, J.J. and Ciampi, S., The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies, Chem. Soc. Rev., 2011, vol. 40, p. 2704.
  8. Mirsky, V.M., New electroanalytical applications of self-assembled monolayers, TrAC, Trends Anal. Chem. 2002, vol. 21, p. 439.
  9. Byloos, M., Al-Maznai, H., and Morin, M., Formation of a self-assembled monolayer via the electrospreading of physisorbed miselles of thiolates, J. Phys. Chem. B., 1999, vol. 103, p. 6554.
  10. Yang, D.-F., Wilde, C.P., and Morin, M., Electrochemical desorption and adsorption of nonyl mercaptan at gold single crystal electrode surface, Langmuir, 1996, vol. 12, p. 6570.
  11. Ovchinnikova, S.N. and Medvedev, A.Zh., Desorption of octanthiol from gold electrode surface during its electrochemical cleaning, Russ. J. Electrochem., 2015, vol. 51, p. 287.]
  12. Sadler, J.E., Szumski, D.S., Kierzkowska, A., Catarelli, S.R., Stella, K., Nichols, R.J., Fonticelli, M.H., Benitez, G., Blum, B., Salvarezza, R.C., and Schwarzacher, W., Surface functionalization of electro-deposited nickel, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 17987.
  13. Oymatsu, D., Kuwabata, S., and Yoneyama, H., Underpotential deposition behavior of metals onto gold electrodes coated with self-assembled monolayers of alkanthiols, J. Electroanal. Chem., 1999, vol. 473, p. 59.
  14. Yuan, M., Zhan, S., Zhou, X., Liu, Y., Feng, L., Lin, Y., Zhang, Z., and Hu, J., A method for removing self-assembled monolayers on gold, Langmuir, 2008, vol. 24, p. 8707.
  15. Porter, M.D., Bright, T.B., Allara, D.L., and Chidseyir, C.E.D., Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, J. Am. Chem. Soc., 1987, vol. 109, p. 3559.
  16. Kabanova, O.L., The effect of oxygen adsorption on oxidation of ferrocyanide ions on gold electrode, Zh. Anal. Khim., 1961, vol. 16, no. 2, p. 135.
  17. Loo, B.Y., Lee, Y.G., Liang, E.J., and Kiefer, W., Surface-enhanced Raman scattering from ferrocyanide and ferricyanide ions adsorbed on silver and copper colloids, Chem. Phys. Lett., 1998, vol. 297, p. 83.
  18. Smalley, J.F., Geng, L., Feldberg, S.W., Rogers, L.C., and Leddy, J., Evidence for adsorption of on gold using the indirect laser-induced temperaturejump method, J. Electroanal. Chem., 1993, vol. 356, p. 181.
  19. Fleischmann, M., Graves, P.R., and Robinson, J., The Raman spectroscopy of the ferricyanide/ferrocyanide system at gold-palladium hydride and platinum electrodes, J. Electroanal. Chem., 1985, vol. 182, p. 87.
  20. Lowry, R.B., SERS and Fourier transform SERS studies of the hexacyanoferrate(III)–hexacyanoferrate(II) couple on gold electrode surfaces, J. Raman Spectrosc., 1991, vol. 22, p. 805.
  21. Lowry, R.B., Fourier transform SERS studies of the chemisorption of ferricyanide on gold electrode surfaces, Spectrochim. Acta, 1993, vol. 49a, p. 831.
  22. Christensen, P., Hamnett, A., and Trevellick, P., In situ infrared studies in electrochemistry, J. Electroanal. Chem., 1988, vol. 242, p. 23.
  23. Niwa, K. and Doblhofer, K., IR spectroscopic study of adsorbed species formed on electrodes during the charge transfer reaction, Electrochim. Acta, 1986, vol. 31, p. 439.
  24. Ovchinnikova, S.N., Comparative electrochemical study of self-assembly of octanthiol from aqueous and aqueous ethanol solutions on a gold electrode, Russ. J. Electrochem., 2016, vol. 52, p. 260.
  25. Zelinskii, A.G. and Bek, R.Yu., Solid electrode with the surface renewed by cutting, Elektrokhimiya, 1985, vol. 21, p. 66.
  26. Kletenik, Yu.B. and Aleksandrova, T.P., Submicron regeneration of the working surface of indicator electrodes: regeneration of metal electrodes, J. Anal. Chem., 1997, vol. 52, p. 680.
  27. Michri, A.A., Pshenichnikov, A.G., and Burshtein, R.Kh., Determination of the true surface of smooth gold electrode, Elektrokhimiya, 1972, vol. 8, p. 364.
  28. Rogozhnikov, N.A. and Bek, R.Yu., Double-layer capacitance and zero-charge potential of gold electrode in cyanide solutions, Elektrokhimiya, 1987, vol. 23, p. 1440.
  29. Zhong, C.J. and Porter, M.D., Fine structure in the voltammetric desorption curves of alkanethiolate monolayers chemisorbed at gold, J. Electroanal. Chem., 1997, vol. 425, p. 147.
  30. Wong, S.S. and Porter, M.D., Origin of the multiple voltammetric desorption waves of long-chain alkanthiolate monolayers chemisorbed on annealed gold electrodes, J. Electroanal. Chem., 2000, vol. 485, p. 135.
  31. Byloos, M., Al-Maznai, H., and Morin, M., Phase transitions alkanthiol self-assembled monolayers at a electrified gold surface, J. Phys. Chem. B., 2001, vol. 105, p. 5900.
  32. Walczak, M.M., Aves, C.A., Lamp, B.D., and Porter, M.D., Electrochemical and X-ray photoelectron spectroscopic evidence for difference in the binding sites of alcanthiolate monolayers chemisorbed at gold, J. Electroanal. Chem., 1995, vol. 396, p. 103.
  33. Muglari, M.I., Erbe, A., Chen, Y., Barth, C., Koelsch, P., and Rohwerder, M., Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold, Electrochim. Acta, 2013, vol. 90, p. 17.